Land Cover Change Simulation Based on Cellular Automata Using Artificial Neural Network Model Transition in Kedungkandang District, Malang City

  • Conference paper
  • First Online:
Proceedings of the 6th International Conference on Indonesian Architecture and Planning (ICIAP 2022) (ICIAP 2022)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 334))

Included in the following conference series:

  • 180 Accesses

Abstract

Kedungkandang District, Malang City, has experienced a rapid increase in population, so within ten years there has been a conversion of non-built land. In line with population development, Kedungkandang District is also experiencing very rapid infrastructure development, so it is indicated that it can encourage greater land conversion. This study tries to develop a spatial model of land cover change in the Kedungkandang District based on Cellular Automata. The researcher uses the Artificial Neural Network (ANN) model, which is a machine learning technique used to model potential future land cover change transitions. The prediction results show that there is a growth of 166,78 hectares of built-up land from 2016 to 2036. The results of this modeling and prediction can be used as a basis for stakeholders in formulating future needs for infrastructure and public facilities, as well as ensuring effective policies to embody a sustainable environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaad K, Abdelghany K (2021) The story of five MENA cities: urban growth prediction modeling using remote sensing and video analytics. Cities 118:103393

    Article  Google Scholar 

  2. UN-Habitat (2020) International guidelines on urban on territorial planning. Nairobi, Kenya

    Google Scholar 

  3. Crooks A, Castle C, Batty M (2008) Key Challenges in agent-based modelling for geo-spatial simulation. Comput Environ Urban Syst 32:417–430

    Article  Google Scholar 

  4. Tang J, Li Y, Cui S, Xu L, Ding S, Nie W (2020) Linking land-use change, landscape patterns, and ecosystem services in a coastal watershed of Southeastern China. Glob Ecol Conserv 23:e01177

    Article  Google Scholar 

  5. Yilmaz M, Terzi F (2019) The effects of urban spatial development on coastal ecosystems: the case of Mersin, Turkey. IOP Conf Ser Mater Sci Eng 471

    Google Scholar 

  6. Wang Y, Sha Z, Tan X, Lan H, Liu X, Rao J (2020) Modeling urban growth by coupling localized spatio-temporal association analysis and binary logistic regression. Comput Environ Urban Syst 81:101482

    Article  Google Scholar 

  7. Yilmaz M, Terzi F (2020) Characteristics of spatio-temporal urban growth patterns due to the driving forces of urbanization: the coastal city of Antalya. Turk Int Rev Spat Plan Sustain Dev 8:16–33

    Google Scholar 

  8. Sarparast M, Ownegh M, Sepehr A (2020) Investigation the driving forces of land-use change in Northeastern Iran: causes and effects. Remote Sens Appl Soc Environ 19:100348

    Google Scholar 

  9. Adrianto DW, Hasyim AW, Dinanti D, Dwi J, Sandy H (2017) Valuasi Sumber Daya Lahan di **giran Kota Malang (Studi Kasus: Wilayah **giran Kota Malang, Kelurahan Tunggulwulung Kecamatan Lowokwaru, pp 335–342

    Google Scholar 

  10. Li X, Gong P (2016) Urban growth models: progress and perspective. Sci Bull 61:1637–1650

    Article  Google Scholar 

  11. Pozoukidou G (2018) Modeling urban dynamics: the case of Periurban development in East Thessaloniki. Eur J Environ Sci 8:23–30

    Google Scholar 

  12. Pumain D (2019) Urban dynamics and geo-diversity: from theory to modeling. Ann Austrian Geogr Soc 159:7–22

    Google Scholar 

  13. Batty M (2009) Urban modeling. In: International encyclopedia of human geography, pp 51–58. Elsevier, Oxford

    Google Scholar 

  14. Batty M (2016) Classifying urban models. Environ Plan B 43:251–256

    Google Scholar 

  15. Temesgen H, Wu W, Legesse A, Yirsaw E (2021) Modeling and prediction of effects of land use change in an agroforestry dominated Southeastern Rift-Valley escarpment of Ethiopia. Remote Sens Appl Soc Environ 21:100469

    Google Scholar 

  16. Batty M, Longley P (1994) Fractal cities: a geometry of form and function. Harcourt Brace & Company, London

    MATH  Google Scholar 

  17. White R, Engelen G (2000) High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Comput Environ Urban Syst 24:383–400

    Article  Google Scholar 

  18. Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93:314–337

    Article  Google Scholar 

  19. Batty M, **e Y, Sun Z (1999) Modeling urban dynamics through GIS-based cellular automata. Comput Environ Urban Syst 23:205–233

    Article  Google Scholar 

  20. Kyakuno T (2020) Prediction of land use changes with bayesian spatial modeling from the perspective of urban climate. Urban Clim 31:100569

    Article  Google Scholar 

  21. Kong L, Tian G, Ma B, Liu X (2017) Embedding ecological sensitivity analysis and new satellite town construction in an agent-based model to simulate urban expansion in the Bei**g metropolitan region. China Ecol Indic 82:233–249

    Article  Google Scholar 

  22. Mashhadi AA, Shafiee ME, Berglund EZ (2017) Agent-based modeling to simulate the dynamics of urban water supply: climate, population growth, and water shortages. Sustain Cities Soc 28:420–434

    Article  Google Scholar 

  23. González-Méndez M, Olaya C, Fasolino I, Grimaldi M, Obregón N (2021) Agent-based modeling for urban development planning based on human needs. Conceptual basis and model formulation. Land Use Policy 101:105110

    Google Scholar 

  24. Batty M (2005) Agents, cells, and cities: new representational models for simulating multiscale urban dynamics. Environ Plan A 37:1373–1394

    Article  Google Scholar 

  25. Kantakumar LN, Kumar S, Schneider K (2019) SUSM: a scenario-based urban growth simulation model using remote sensing data. Eur J Remote Sens 52:26–41

    Article  Google Scholar 

  26. Saxena A, Jat MK (2020) Land suitability and urban growth modeling: development of SLEUTH-suitability. Comput Environ Urban Syst 81:101475

    Article  Google Scholar 

  27. Roodposhti MS, Aryal J, Bryan BA (2019) A novel algorithm for calculating transition potential in cellular automata models of land-use/cover change. Environ Model Softw 112:70–81

    Article  Google Scholar 

  28. Sfa FE, Nemiche M, Raydo H (2020) A generic macroscopic cellular automata model for land use change: the case of The Drâa Valley. Ecol Complex 43:100851

    Article  Google Scholar 

  29. Yeh AGO, Li X (2002) Urban simulation using neural networks and cellular automata for land use planning. Symp Geospatial Theory Process Appl

    Google Scholar 

  30. Glushakova I, Liu Q, Zhang Y, Zhou G (2020) Conjugate cellular automata and neural network approach: failure load prediction of masonry panels. Adv Civ Eng 2020

    Google Scholar 

  31. BAPPEDA Kota Malang (2023) Musrenbang Kecamatan Kedungkandang dalam Rangka Penyusunan RKPD Tahun. https://bappeda.malangkota.go.id/web/musrenbang-kecamatan-kedungkandang-dalam-rangka-penyusunan-rkpd-tahun-2023/

  32. Wahyudi A, Liu Y (2016) Cellular automata for urban growth modelling. Int Rev Spat Plan Sustain Dev 4:60–75

    Google Scholar 

  33. Campos PBR, de Almeida CM, de Queiroz AP (2018) Educational infrastructure and its impact on urban land use change in a Peri-Urban area: a cellular-automata based approach. Land Use Policy 79:774–788

    Article  Google Scholar 

  34. Gharbia SS, Alfatah SA, Gill L, Johnston P, Pilla F (2016) Land use scenarios and projections simulation using an integrated GIS cellular automata algorithms. Model Earth Syst Environ 2:1–20

    Article  Google Scholar 

  35. Qian Y, **ng W, Guan X, Yang T, Wu H (2020) Coupling cellular automata with area partitioning and spatiotemporal convolution for dynamic land use change simulation. Sci Total Environ 722:137738

    Article  Google Scholar 

  36. Aarthi AD, Gnanappazham L (2018) Urban growth prediction using neural network coupled agents-based cellular automata model for Sriperumbudur Taluk, Tamil Nadu, India. Egypt J Remote Sens Sp Sci 21:353–362

    Google Scholar 

  37. **ng W, Qian Y, Guan X, Yang T, Wu H (2020) A novel cellular automata model integrated with deep learning for dynamic spatio-temporal land use change simulation. Comput Geosci 137:104430

    Article  Google Scholar 

  38. Zhou L, Dang X, Sun Q, Wang S (2020) Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain Cities Soc 55:102045

    Article  Google Scholar 

  39. Zaitsev DA (2017) A generalized neighborhood for cellular automata. Theor Comput Sci 666:21–35

    Article  MathSciNet  MATH  Google Scholar 

  40. Kumar P, Sharma A (2019) DCWI: distribution descriptive curve and cellular automata based writer identification. Expert Syst Appl 128:187–200

    Article  Google Scholar 

  41. Batty M (1997) Cellular automata and urban form: a primer. Am Plan Assoc 63

    Google Scholar 

  42. Mohammady S, Delavar MR, Pahlavani P (2014) Urban growth modeling using an artificial neural network a case study of Sanandaj City, Iran. Int Arch Photogramm Remote Sens Spat Inf Sci-ISPRS Arch 40:203–208

    Google Scholar 

  43. Thangavel R, Kanchikerimath M, Sudharsanam A, Ayyanadar A, Karunanithi R, Deshmukh NA, Vanao NS (2018) Evaluating organic carbon fractions, temperature sensitivity and artificial neural network modeling of CO2 efflux in soils: impact of land use change in subtropical India (Meghalaya). Ecol Indic 93:129–141

    Article  Google Scholar 

  44. Christen P, Del Fabbro O (2021) Automatic programming of cellular automata and artificial neural networks guided by philosophy. Stud Syst Decis Control 294:131–146

    Article  Google Scholar 

  45. Lauret P, Heymes F, Aprin L, Johannet A (2016) Atmospheric dispersion modeling using artificial neural network based cellular automata. Environ Model Softw 85:56–69

    Article  Google Scholar 

  46. Gharaibeh A, Shaamala A, Obeidat R, Al-Kofahi S (2020) Improving land-use change modeling by integrating ANN with cellular Automata-Markov chain model. Heliyon 6:e05092

    Article  Google Scholar 

  47. Park S, Jeon S, Kim S, Choi C (2011) Prediction and comparison of urban growth by land suitability index map** using GIS and RS in South Korea. Landsc Urban Plan 99:104–114

    Article  Google Scholar 

  48. Shafizadeh-Moghadam H, Tayyebi A, Helbich M (2017) Transition index maps for urban growth simulation: application of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation. Environ Monit Assess 189

    Google Scholar 

  49. Guan Q, Wang L, Clarke KC (2005) An artificial-neural-network-based, constrained CA model for simulating urban growth. Cartogr Geogr Inf Sci 32:369–380

    Article  Google Scholar 

  50. Mienmany B (2018) Analysis of land use and land cover changes and the driving forces: a case study in Kaysone Phomvihan District. University of Porto, Laos

    Google Scholar 

Download references

Acknowledgements

We are very grateful for the support from the Department of Urban and Regional Planning of Brawijaya University, members of the Editorial Board, and anonymous reviewers for their comments and the improvement of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annisa Dira Hariyanto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hariyanto, A.D., Yudono, A., Wicaksono, A.D. (2023). Land Cover Change Simulation Based on Cellular Automata Using Artificial Neural Network Model Transition in Kedungkandang District, Malang City. In: Swasto, D.F., Rahmi, D.H., Rahmawati, Y., Hidayati, I., Al-Faraby, J., Widita, A. (eds) Proceedings of the 6th International Conference on Indonesian Architecture and Planning (ICIAP 2022). ICIAP 2022. Lecture Notes in Civil Engineering, vol 334. Springer, Singapore. https://doi.org/10.1007/978-981-99-1403-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1403-6_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1402-9

  • Online ISBN: 978-981-99-1403-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation