Wheel Shaped Defected Ground Structure Microstrip Patch Antenna with High Gain and Bandwidth for Breast Tumor Detection

  • Conference paper
  • First Online:
Proceedings of the International Conference on Intelligent Computing, Communication and Information Security (ICICCIS 2022)

Abstract

A high gain wheel shaped antenna is designed for the field of biotelemetry. An antenna is designed for the ISM (2.4–2.48 GHz) band. The proposed antenna obtains a high directivity and has a compact wheel shaped designed. Antenna occupies an area of 54.4 × 54.4 × 1.67 mm using FR4 substrate due to its flexibility. The prototype of antenna is simulated and checked for detecting the tumor in the breast phantom design. The proposed antenna has a peak directivity of 5.88 dB. The biocompatibility of antenna is checked by evaluating the value of SAR. Design achieves the bandwidth of 266 MHz. The presence of the tumor is measured by examining the value of SAR. The specification absorption rate is 0.0162 W/kg for 1 g and 0.00552 W/kg for 10 g. Furthermore, the designed antenna is compared by the already designed antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Movassaghi S, Abolhasan M, Lipman J, Smith D, Jamalipour A (2014) Wireless body area networks: a survey. IEEE Commun Surv Tutor 16(3):1658–1686

    Article  Google Scholar 

  2. Sharma A, Sharma VK, Gour S, Rathi A (2022) Conical shaped frequency reconfigurable antenna using DGS for cognitive radio applications. In: 8th international conference on advanced computing and communication systems, Coimbatore, India, pp 799–804

    Google Scholar 

  3. Malik NA, Sant P, Ajmal T, Rehman MU (2021) Implantable antennas for biomedical applications. IEEE J Electromagn RF Microw Med Biol 5(1):84–96

    Article  Google Scholar 

  4. Kiourti A, Nikita KS (2012) A review of implantable patch antennas for biomedical telemetry challenges and solutions. IEEE Antennas Propag Mag 54(3):210–228

    Article  Google Scholar 

  5. Vijayakumar P et al (2022) Network security using multi-layer neural network. In: 4th RSRI international conference on recent trends in science and engineering, REST Labs, Krishnagiri, Tamil Nadu, India, 27–28 Feb 2021. AIP Conf Proc 2393:020089, 020089-1–020089-5. https://doi.org/10.1063/5.0074089

  6. Rawat A, Tiwari A, Gour S, Joshi R (2021) Enhanced performance of metamaterials loaded substrate integrated waveguide antenna for multiband application. In: Proceedings of IEEE international conference on mobile

    Google Scholar 

  7. Karthik V, Rama Rao T (2017) Investigations on SAR and thermal effects of a body wearable microstrip antenna. Wireless Pers Commun 3385–3401

    Google Scholar 

  8. Sharma A, Saini Y, Singh AK, Rathi A (2020) Recent advancements and technological challenges in flexible electronics: mm wave wearable array for 5G networks. AIP Conf Proc 2294(1):020007. AIP Publishing LLC

    Google Scholar 

  9. Mahrishi M et al (2020) Machine learning and deep learning in real time applications. IGI Global. https://doi.org/10.4018/978-1-7998-3095-5. ISBN 13: 9781799830955, ISBN 10: 1799830950, EISBN 13: 9781799830979

  10. Ganeshwaran N, Kumar KJ (2019) Design of a dual-band circular implantable antenna for biomedical applications. IEEE Antennas Wireless Propag Lett 99

    Google Scholar 

  11. International Commission on Non-Ionizing Radiation Protection (1998) Guidelines for limiting to time varying electric, magnetic, and electromagnetic fields (upto 300 GHz). Health Phys 74(4):494–522

    Google Scholar 

  12. Hossain MB, Hossain MF (2021) A dual band microstrip patch antenna with metamaterial superstrate for biomedical applications. In: Proceedings of international conference on electronics, communications and information teleology (ICECIT), Khulna, Bangladesh, p 14

    Google Scholar 

  13. Alhuwaidi S, Rashid T (2021) A novel compact wearable microstrip patch antenna for medical application. In: Proceedings of 2020 international conference on communications, signal processing, and their applications

    Google Scholar 

  14. Mahbub F, Islam R (2021) Design and implementation of a microstrip patch antenna for the detection of cancers and tumors in skeletal muscle of the human body using ISM band. In: Proceedings of annual information technology, electronics and mobile communication conference

    Google Scholar 

  15. Rahayu Y, Saputra R, Reza MH (2021) Microstrip antenna for tumor detection: SAR analysis. In: Proceedings of international conference on smart instrumentation, measurement and applications

    Google Scholar 

  16. Soni BK, Singh K, Rathi A, Sancheti S (2022) Performance improvement of aperture coupled MSA through Si micromachining. Int J Circuits Syst Signal Process 16:272–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Rathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gour, S., Sharma, R., Sharma, A., Rathi, A. (2023). Wheel Shaped Defected Ground Structure Microstrip Patch Antenna with High Gain and Bandwidth for Breast Tumor Detection. In: Devedzic, V., Agarwal, B., Gupta, M.K. (eds) Proceedings of the International Conference on Intelligent Computing, Communication and Information Security. ICICCIS 2022. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-1373-2_2

Download citation

Publish with us

Policies and ethics

Navigation