Maintenance of Human Pluripotent Stem Cells

  • Chapter
  • First Online:
Methods in Cancer Stem Cell Biology
  • 276 Accesses

Abstract

During the last decades, the field of stem cell research has rapidly expanded with the potential to develop the technology of tissue regeneration as well as the discovery of novel therapeutic agents. The innovative procedure of cellular reprogramming, which was found by Yamanaka in 2007, lead to the generation of induced pluripotent stem cells (iPSCs) from a somatic cell namely a normal fibroblast. The maintenance of iPSCs in a successful manner is critical issue because undifferentiated state should be kept in the culture. Especially, extra attention should be payed to maintain their key characteristics of self-renewal and pluripotency avoiding unexpected differentiation. In this chapter, we describe the basic techniques necessary to culture human or mouse iPSCs, e.g starting from the frozen stocks, eeding cells into culture vessels, changing media, passaging, and cryopreservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bioani M, Schöler HR. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol. 2006;6:872–84.

    Article  Google Scholar 

  • Boyer L, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441:349–53.

    Article  CAS  PubMed  Google Scholar 

  • Ding VM, Ling L, Natarajan S, Yap MG, Cool SM, Choo AB. FGF-2 modulates Wnt signaling in undifferentiated hESC and iPS cells through activated PI3-K/GSK3beta signaling. J Cell Physiol. 2010;225:417–28.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Nakamura T, Nakao K, Arai K, Katsuki M, Heike T, Yokota T. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 1999;18:4261–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima Y, Omasa T. What Kind of Signaling Maintains Pluripotency and Viability in Human-Induced Pluripotent Stem Cells Cultured on Laminin-511 with Serum-Free Medium? Biores Open Access. 2016;5(1):84-93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 1998;12:2048–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24:372–6.

    Article  CAS  PubMed  Google Scholar 

  • Solter D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet. 2006;7:319–27.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://doi.org/10.1016/j.cell.2006.07.024. Epub 2006 Aug 10. PMID: 16904174.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afify, S.M., Seno, M. (2023). Maintenance of Human Pluripotent Stem Cells. In: Methods in Cancer Stem Cell Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1331-2_5

Download citation

Publish with us

Policies and ethics

Navigation