Artificial Intelligence Generative Chemistry Design of Target-Specific Scaffold-Focused Small Molecule Drug Libraries

  • Chapter
  • First Online:
The Quintessence of Basic and Clinical Research and Scientific Publishing
  • 951 Accesses

Abstract

The de novo design of scaffold-focused and target-specific molecular structures using deep learning generative modeling introduces a promising solution to the discovery of novel and potent bioactive drug compounds. Deep learning generative modeling exhibits the creativity that machine intelligence can offer in composing, painting, and even the scratching of novel molecular structures. This chapter mainly covers that how generative chemistry can be effectively applied to the design and generation of scaffold-focused and target-specific small molecules. To this emerging paradigm, the chapter starts with a brief history of artificial intelligence (AI) in drug discovery. Chemical databases, molecular representations, and cheminformatics related tools are covered as the infrastructure. Two example applications of using generative adversarial networks (GAN) and recurrent neural networks (RNN) to realize the de novo compound generation towards the cannabinoid receptor 2 (CB2) are discussed in the chapter. Summary, challenges, and future perspectives follow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R & D costs. J Health Econ 47:20–33

    Article  PubMed  Google Scholar 

  2. Wouters OJ, McKee M, Luyten J (2020) Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA 323(9):844–853

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yasi EA, Kruyer NS, Peralta-Yahya P (2020) Advances in G protein-coupled receptor high-throughput screening. Curr Opin Biotechnol 64:210–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blay V et al (2020) High-Throughput Screening: today’s biochemical and cell-based approaches. Drug Discov Today 25(10):1807–1821

    Article  CAS  PubMed  Google Scholar 

  5. Ge H et al (2019) Significantly different effects of tetrahydroberberrubine enantiomers on dopamine D1/D2 receptors revealed by experimental study and integrated in silico simulation. J Comput Aided Mol Des 33(4):447–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9(2):91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bian Y-M et al (2019) Computational systems pharmacology analysis of cannabidiol: a combination of chemogenomics-knowledgebase network analysis and integrated in silico modeling and simulation. Acta Pharmacol Sin 40(3):374

    Article  CAS  PubMed  Google Scholar 

  8. Bian Y et al (2017) Integrated in silico fragment-based drug design: case study with allosteric modulators on metabotropic glutamate receptor 5. AAPS J 19(4):1235–1248

    Article  CAS  PubMed  Google Scholar 

  9. Kwon JJ et al (2022) Structure–function analysis of the SHOC2–MRAS–PP1C holophosphatase complex. Nature 609(7926):408–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang J et al (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed  Google Scholar 

  11. Vanommeslaeghe K et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6(3):211–219

    Article  CAS  PubMed  Google Scholar 

  13. Yang S-Y (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15(11–12):444–450

    Article  CAS  PubMed  Google Scholar 

  14. Wieder M et al (2017) Common hits approach: combining pharmacophore modeling and molecular dynamics simulations. J Chem Inf Model 57(2):365–385

    Article  CAS  PubMed  Google Scholar 

  15. Liu Z et al (2020) Discovery of orally bioavailable chromone derivatives as potent and selective BRD4 inhibitors: scaffolding hop**, optimization and pharmacological evaluation. J Med Chem 63(10):5242–5256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu Y, Stumpfe D, Bajorath J (2017) Recent advances in scaffold hop**: miniperspective. J Med Chem 60(4):1238–1246

    Article  CAS  PubMed  Google Scholar 

  17. Muegge I, Mukherjee P (2016) An overview of molecular fingerprint similarity search in virtual screening. Expert Opin Drug Discovery 11(2):137–148

    Article  CAS  Google Scholar 

  18. Fan Y et al (2019) Investigation of machine intelligence in compound cell activity classification. Mol Pharm 16(11):4472–4484

    Article  CAS  PubMed  Google Scholar 

  19. Minerali E et al (2020) Comparing machine learning algorithms for predicting drug-induced liver injury (DILI). Mol Pharm 17(7):2628–2637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karras T, et al (2019) Analyzing and improving the image quality of stylegan. ar**v preprint ar**v:1912.04958

    Google Scholar 

  21. Wen T-H, et al (2015) Semantically conditioned lstm-based natural language generation for spoken dialogue systems. ar**v preprint ar**v:1508.01745

    Google Scholar 

  22. Zhavoronkov A et al (2019) Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol 37(9):1038–1040

    Article  CAS  PubMed  Google Scholar 

  23. Turing AM (2009) Computing machinery and intelligence. In: Parsing the turing test. Springer, pp 23–65

    Chapter  Google Scholar 

  24. Chollet F (2018) Deep learning mit Python und Keras: das Praxis-Handbuch vom Entwickler der Keras-Bibliothek. MITP-Verlags GmbH & Co. KG

    Google Scholar 

  25. Segler MH, Preuss M, Waller MP (2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555(7698):604–610

    Article  CAS  PubMed  Google Scholar 

  26. Lipinski CA (2016) Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev 101:34–41

    Article  CAS  PubMed  Google Scholar 

  27. Bian Y et al (2019) Prediction of orthosteric and allosteric regulations on cannabinoid receptors using supervised machine learning classifiers. Mol Pharm 16(6):2605–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lo Y-C et al (2018) Machine learning in chemoinformatics and drug discovery. Drug Discov Today 23(8):1538–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. **g Y et al (2018) Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. AAPS J 20(3):58

    Article  PubMed  Google Scholar 

  30. Vamathevan J et al (2019) Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 18(6):463–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bian Y et al (2023) Target-driven machine learning-enabled virtual screening (TAME-VS) platform for early-stage hit identification. Front Mol Biosci 10:1163536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Korotcov A et al (2017) Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol Pharm 14(12):4462–4475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma XH et al (2009) Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries. Comb Chem High Throughput Screen 12(4):344–357

    Article  CAS  PubMed  Google Scholar 

  34. Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design-a review. Curr Top Med Chem 10(1):95–115

    Article  CAS  PubMed  Google Scholar 

  35. Fan F et al (2019) The integration of pharmacophore-based 3D QSAR modeling and virtual screening in safety profiling: a case study to identify antagonistic activities against adenosine receptor, A2A, using 1,897 known drugs. PLoS One 14(1):e0204378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gladysz R et al (2018) Spectrophores as one-dimensional descriptors calculated from three-dimensional atomic properties: applications ranging from scaffold hop** to multi-target virtual screening. J Chem 10(1):9

    Google Scholar 

  37. Nguyen TT, Nguyen ND, Nahavandi S (2020) Deep reinforcement learning for multiagent systems: a review of challenges, solutions, and applications. IEEE Trans Cybernet 50:3826–3839

    Article  Google Scholar 

  38. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  CAS  PubMed  Google Scholar 

  39. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press

    Google Scholar 

  40. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  CAS  PubMed  Google Scholar 

  41. Goodfellow I et al (2014) Generative adversarial nets. In: Advances in neural information processing systems

    Google Scholar 

  42. Bian Y, **e X-Q (2021) Generative chemistry: drug discovery with deep learning generative models. J Mol Model 27:1–18

    Article  Google Scholar 

  43. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–D169

    Article  Google Scholar 

  44. Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang R et al (2005) The PDBbind database: methodologies and updates. J Med Chem 48(12):4111–4119

    Article  CAS  PubMed  Google Scholar 

  46. Kim S et al (2019) PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 47(D1):D1102–D1109

    Article  PubMed  Google Scholar 

  47. Gaulton A et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 45(D1):D945–D954

    Article  CAS  PubMed  Google Scholar 

  48. Papadatos G et al (2016) SureChEMBL: a large-scale, chemically annotated patent document database. Nucleic Acids Res 44(D1):D1220–D1228

    Article  CAS  PubMed  Google Scholar 

  49. Wishart DS et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082

    Article  CAS  PubMed  Google Scholar 

  50. Sterling T, Irwin JJ (2015) ZINC 15–ligand discovery for everyone. J Chem Inf Model 55(11):2324–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang Z et al (2014) ASD v2. 0: updated content and novel features focusing on allosteric regulation. Nucleic Acids Res 42(D1):D510–D516

    Article  CAS  PubMed  Google Scholar 

  52. Ruddigkeit L et al (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 52(11):2864–2875

    Article  CAS  PubMed  Google Scholar 

  53. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28(1):31–36

    Article  CAS  Google Scholar 

  54. Heller SR et al (2015) InChI, the IUPAC international chemical identifier. J Chem 7(1):23

    Google Scholar 

  55. Durant JL et al (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42(6):1273–1280

    Article  CAS  PubMed  Google Scholar 

  56. Glen RC et al (2006) Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. IDrugs 9(3):199

    CAS  Google Scholar 

  57. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754

    Article  CAS  PubMed  Google Scholar 

  58. Hert J et al (2004) Comparison of fingerprint-based methods for virtual screening using multiple bioactive reference structures. J Chem Inf Comput Sci 44(3):1177–1185

    Article  CAS  PubMed  Google Scholar 

  59. Pérez-Nueno VI et al (2009) APIF: a new interaction fingerprint based on atom pairs and its application to virtual screening. J Chem Inf Model 49(5):1245–1260

    Article  PubMed  Google Scholar 

  60. Jiang D et al (2021) Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models. J Chem 13(1):1–23

    Google Scholar 

  61. Landrum G (2016) Rdkit: open-source cheminformatics software. GitHub and SourceForge 10:3592822

    Google Scholar 

  62. O’Boyle NM et al (2011) Open Babel: an open chemical toolbox. J Chem 3(1):33

    Google Scholar 

  63. Willighagen EL et al (2017) The Chemistry Development Kit (CDK) v2. 0: atom ty**, depiction, molecular formulas, and substructure searching. J Chem 9(1):33

    Google Scholar 

  64. Arabie P, et al (2006) Studies in classification, data analysis, and knowledge organization. https://doi.org/10.1007/3-540-35978-8_34

  65. Abadi M et al (2016) Tensorflow: a system for large-scale machine learning. In: 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16)

    Google Scholar 

  66. Etaati L (2019) Deep learning tools with cognitive toolkit (CNTK). In: Machine learning with microsoft technologies. Springer, pp 287–302

    Chapter  Google Scholar 

  67. Team T, et al (2016) Theano: a Python framework for fast computation of mathematical expressions. https://doi.org/10.48550/ar**v.1605.02688

  68. Paszke A et al (2019) PyTorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems

    Google Scholar 

  69. Chollet F (2015) keras is an open-source neural-network library written in Python. GitHub. https://github.com/fchollet/keras

  70. Pedregosa F et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  71. Bian Y et al (2019) Deep convolutional generative adversarial network (dcGAN) models for screening and design of small molecules targeting cannabinoid receptors. Mol Pharm 16(11):4451–4460

    Article  CAS  PubMed  Google Scholar 

  72. LeCun Y et al (1995) Comparison of learning algorithms for handwritten digit recognition. In: International conference on artificial neural networks, Perth, WA

    Google Scholar 

  73. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems

    Google Scholar 

  74. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer

    Google Scholar 

  75. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ar**v preprint ar**v:1409.1556

    Google Scholar 

  76. Heusel M, et al (2017) Gans trained by a two time-scale update rule converge to a nash equilibrium. 12(1):ar**v preprint ar**v:1706.08500

    Google Scholar 

  77. Bian Y, **e X-Q (2022) Artificial intelligent deep learning molecular generative modeling of scaffold-focused and cannabinoid CB2 target-specific small-molecule sublibraries. Cells 11(5):915

    Article  PubMed  PubMed Central  Google Scholar 

  78. Prykhodko O et al (2019) A de novo molecular generation method using latent vector based generative adversarial network. J Chem 11(1):1–13

    Google Scholar 

  79. Moret M et al (2020) Generative molecular design in low data regimes. Nat Mach Intellig 2(3):171–180

    Article  Google Scholar 

  80. Iwamura H et al (2001) In vitro and in vivo pharmacological characterization of JTE-907, a novel selective ligand for cannabinoid CB2 receptor. J Pharmacol Exp Ther 296(2):420–425

    CAS  PubMed  Google Scholar 

  81. Ueda Y et al (2005) Involvement of cannabinoid CB2 receptor-mediated response and efficacy of cannabinoid CB2 receptor inverse agonist, JTE-907, in cutaneous inflammation in mice. Eur J Pharmacol 520(1–3):164–171

    Article  CAS  PubMed  Google Scholar 

  82. Yang P et al (2012) Lead discovery, chemistry optimization, and biological evaluation studies of novel biamide derivatives as CB2 receptor inverse agonists and osteoclast inhibitors. J Med Chem 55(22):9973–9987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pertwee R et al (1995) AM630, a competitive cannabinoid receptor antagonist. Life Sci 56(23–24):1949–1955

    Article  CAS  PubMed  Google Scholar 

  84. Ross RA et al (1999) Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L759633, L759656 and AM630. Br J Pharmacol 126(3):665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang P et al (2013) Novel triaryl sulfonamide derivatives as selective cannabinoid receptor 2 inverse agonists and osteoclast inhibitors: discovery, optimization, and biological evaluation. J Med Chem 56(5):2045–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding support to the **e Laboratory and CDAR Center from the NIH (R01DA052329, P30PDA035778A and R56AG074951).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ang-Qun **e .

Editor information

Editors and Affiliations

Ethics declarations

All authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bian, Y., Hou, G., **e, XQ. (2023). Artificial Intelligence Generative Chemistry Design of Target-Specific Scaffold-Focused Small Molecule Drug Libraries. In: Jagadeesh, G., Balakumar, P., Senatore, F. (eds) The Quintessence of Basic and Clinical Research and Scientific Publishing. Springer, Singapore. https://doi.org/10.1007/978-981-99-1284-1_31

Download citation

Publish with us

Policies and ethics

Navigation