Tumor Ecosystem-Directed Therapeutic Strategies

  • Chapter
  • First Online:
Tumor Ecosystem
  • 337 Accesses

Abstract

We have finally reached the end of this book. Having a comprehensive summary of how to understand cancer as an ecosystem, how to view cancer as an ecological entity, and understanding how each component in the local onco-sphere, inter-communications among onco-spheres, including how the host environment could affect the tumor behavior; has led us to grow in deeper understanding of the core biology and mechanisms of cancer occurrence, growth, and metastasis. Therefore, it is high time to treat tumors as an ecological network, finding solutions to modify the systemic or the distal onco-sphere that can have detrimental effect toward the local onco-sphere. In this chapter, we emphasize on targeting specific niches in the local, distal and systemic onco-sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726

    Article  CAS  PubMed  Google Scholar 

  2. Borst P (2012) Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol 2(5):120066

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74

    Article  CAS  PubMed  Google Scholar 

  4. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L et al (2015) Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532

    Article  CAS  PubMed  Google Scholar 

  5. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833

    Article  CAS  PubMed  Google Scholar 

  6. Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS et al (2017) Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171(4):934–49.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Szakács G, Hall MD, Gottesman MM, Boumendjel A, Kachadourian R, Day BJ et al (2014) Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem Rev 114(11):5753–5774

    Article  PubMed  PubMed Central  Google Scholar 

  8. Silva AS, Kam Y, Khin ZP, Minton SE, Gillies RJ, Gatenby RA (2012) Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res 72(24):6362–6370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lei Y, Tang L, **e Y, **anyu Y, Zhang L, Wang P et al (2017) Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat Commun 8:15130

    Article  PubMed  PubMed Central  Google Scholar 

  10. Parks SK, Chiche J, Pouysségur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 13(9):611–623

    Article  CAS  PubMed  Google Scholar 

  11. Spugnini E, Fais S (2017) Proton pump inhibition and cancer therapeutics: a specific tumor targeting or it is a phenomenon secondary to a systemic buffering? Semin Cancer Biol 43:111–118

    Article  CAS  PubMed  Google Scholar 

  12. Neri D, Supuran CT (2011) Interfering with pH regulation in tumors as a therapeutic strategy. Nat Rev Drug Discov 10(10):767–777

    Article  CAS  PubMed  Google Scholar 

  13. Fais S, Venturi G, Gatenby B (2014) Microenvironmental acidosis in carcinogenesis and metastases: new strategies in prevention and therapy. Cancer Metastasis Rev 33(4):1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Milito A, Iessi E, Logozzi M, Lozupone F, Spada M, Marino ML et al (2007) Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species. Cancer Res 67(11):5408–5417

    Article  PubMed  Google Scholar 

  15. Luciani F, Spada M, De Milito A, Molinari A, Rivoltini L, Montinaro A et al (2004) Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst 96(22):1702–1713

    Article  CAS  PubMed  Google Scholar 

  16. Taylor S, Spugnini EP, Assaraf YG, Azzarito T, Rauch C, Fais S (2015) Microenvironment acidity as a major determinant of tumor chemoresistance: proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist Updat 23:69–78

    Article  PubMed  Google Scholar 

  17. Yuan N, Song L, Zhang S, Lin W, Cao Y, Xu F et al (2015) Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica 100(3):345–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan Y, Jiang K, Liu P, Zhang X, Dong X, Gao J et al (2016) Bafilomycin A1 induces caspase-independent cell death in hepatocellular carcinoma cells via targeting of autophagy and MAPK pathways. Sci Rep 6:37052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A et al (2011) Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 71(9):3364–3376

    Article  CAS  PubMed  Google Scholar 

  20. Doyen J, Parks SK, Marcié S, Pouysségur J, Chiche J (2012) Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis. Front Oncol 2:199

    PubMed  Google Scholar 

  21. McIntyre A, Patiar S, Wigfield S, Li JL, Ledaki I, Turley H et al (2012) Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin Cancer Res 18(11):3100–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petrul HM, Schatz CA, Kopitz CC, Adnane L, McCabe TJ, Trail P et al (2012) Therapeutic mechanism and efficacy of the antibody-drug conjugate BAY 79-4620 targeting human carbonic anhydrase 9. Mol Cancer Ther 11(2):340–349

    Article  CAS  PubMed  Google Scholar 

  23. Siebels M, Rohrmann K, Oberneder R, Stahler M, Haseke N, Beck J et al (2011) A clinical phase I/II trial with the monoclonal antibody cG250 (RENCAREX®) and interferon-alpha-2a in metastatic renal cell carcinoma patients. World J Urol 29(1):121–126

    Article  CAS  PubMed  Google Scholar 

  24. Bola BM, Chadwick AL, Michopoulos F, Blount KG, Telfer BA, Williams KJ et al (2014) Inhibition of monocarboxylate transporter-1 (MCT1) by AZD3965 enhances radiosensitivity by reducing lactate transport. Mol Cancer Ther 13(12):2805–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hong CS, Graham NA, Gu W, Espindola Camacho C, Mah V, Maresh EL et al (2016) MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Rep 14(7):1590–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Polański R, Hodgkinson CL, Fusi A, Nonaka D, Priest L, Kelly P et al (2014) Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res 20(4):926–937

    Article  PubMed  Google Scholar 

  27. Lagarde AE, Franchi AJ, Paris S, Pouysségur JM (1988) Effect of mutations affecting Na+: H+ antiport activity on tumorigenic potential of hamster lung fibroblasts. J Cell Biochem 36(3):249–260

    Article  CAS  PubMed  Google Scholar 

  28. Parks SK, Cormerais Y, Durivault J, Pouyssegur J (2017) Genetic disruption of the pHi-regulating proteins Na+/H+ exchanger 1 (SLC9A1) and carbonic anhydrase 9 severely reduces growth of colon cancer cells. Oncotarget 8(6):10225–10237

    Article  PubMed  Google Scholar 

  29. Pouysségur J, Sardet C, Franchi A, L'Allemain G, Paris S (1984) A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc Natl Acad Sci U S A 81(15):4833–4837

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rich IN, Worthington-White D, Garden OA, Musk P (2000) Apoptosis of leukemic cells accompanies reduction in intracellular pH after targeted inhibition of the Na(+)/H(+) exchanger. Blood 95(4):1427–1434

    Article  CAS  Google Scholar 

  31. Harley W, Floyd C, Dunn T, Zhang XD, Chen TY, Hegde M et al (2010) Dual inhibition of sodium-mediated proton and calcium efflux triggers non-apoptotic cell death in malignant gliomas. Brain Res 1363:159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Masereel B, Pochet L, Laeckmann D (2003) An overview of inhibitors of Na(+)/H(+) exchanger. Eur J Med Chem 38(6):547–554

    Article  CAS  PubMed  Google Scholar 

  33. McIntyre A, Hulikova A, Ledaki I, Snell C, Singleton D, Steers G et al (2016) Disrupting hypoxia-induced bicarbonate transport acidifies tumor cells and suppresses tumor growth. Cancer Res 76(13):3744–3755

    Article  CAS  PubMed  Google Scholar 

  34. Wong P, Kleemann HW, Tannock IF (2002) Cytostatic potential of novel agents that inhibit the regulation of intracellular pH. Br J Cancer 87(2):238–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Corbet C, Feron O (2017) Tumor acidosis: from the passenger to the driver's seat. Nat Rev Cancer 17(10):577–593

    Article  CAS  PubMed  Google Scholar 

  36. Sento S, Sasabe E, Yamamoto T (2016) Application of a persistent heparin treatment inhibits the malignant potential of oral squamous carcinoma cells induced by tumor cell-derived exosomes. PLoS One 11(2):e0148454

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nishida-Aoki N, Tominaga N, Takeshita F, Sonoda H, Yoshioka Y, Ochiya T (2017) Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Mol Ther 25(1):181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de la Fuente A, Alonso-Alconada L, Costa C, Cueva J, Garcia-Caballero T, Lopez-Lopez R et al (2015) M-trap: exosome-based capture of tumor cells as a new technology in peritoneal metastasis. J Nat Cancer Inst 107(9):djv184

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164(6):1226–1232

    Article  CAS  PubMed  Google Scholar 

  40. Logozzi M, Mizzoni D, Angelini DF, Di Raimo R, Falchi M, Battistini L et al (2018) Microenvironmental pH and exosome levels interplay in human cancer cell lines of different histotypes. Cancers 10(10):370

    Article  CAS  PubMed  Google Scholar 

  41. Federici C, Petrucci F, Caimi S, Cesolini A, Logozzi M, Borghi M et al (2014) Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One 9(2):e88193

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao H, Achreja A, Iessi E, Logozzi M, Mizzoni D, Di Raimo R et al (2018) The key role of extracellular vesicles in the metastatic process. Biochim Biophys Acta Rev Cancer 1869(1):64–77

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Yang P, Wang XF (2014) Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol 24(3):153–160

    Article  CAS  PubMed  Google Scholar 

  44. Cheshomi H, Matin MM (2018) Exosomes and their importance in metastasis, diagnosis, and therapy of colorectal cancer. J Cell Biochem 120(2):2671–2686

    Article  PubMed  Google Scholar 

  45. Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J et al (2009) Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 10:556

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zaharie F, Muresan MS, Petrushev B, Berce C, Gafencu GA, Selicean S et al (2015) Exosome-carried microRNA-375 inhibits cell progression and dissemination via Bcl-2 blocking in colon cancer. J Gastrointestin Liver Dis 24(4):435–443

    Article  PubMed  Google Scholar 

  47. Teng Y, Ren Y, Hu X, Mu J, Samykutty A, Zhuang X et al (2017) MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun 8:14448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lobb RJ, Lima LG, Möller A (2017) Exosomes: key mediators of metastasis and pre-metastatic niche formation. Semin Cell Dev Biol 67:3–10

    Article  CAS  PubMed  Google Scholar 

  49. Weidle UH, Birzele F, Kollmorgen G, Rüger R (2017) The multiple roles of exosomes in metastasis. Cancer Genomics Proteomics 14(1):1–15

    Article  CAS  PubMed  Google Scholar 

  50. Escudier B, Dorval T, Chaput N, André F, Caby MP, Novault S et al (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J Transl Med 3(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  51. Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM et al (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pei S, Minhajuddin M, D'Alessandro A, Nemkov T, Stevens BM, Adane B et al (2016) Rational design of a parthenolide-based drug regimen that selectively eradicates acute myelogenous leukemia stem cells. J Biol Chem 291(42):21984–22000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schito L, Semenza GL (2016) Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2(12):758–770

    Article  PubMed  Google Scholar 

  54. Berger C, Sommermeyer D, Hudecek M, Berger M, Balakrishnan A, Paszkiewicz PJ et al (2015) Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells. Cancer Immunol Res 3(2):206–216

    Article  CAS  PubMed  Google Scholar 

  55. Zhu TS, Costello MA, Talsma CE, Flack CG, Crowley JG, Hamm LL et al (2011) Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res 71(18):6061–6072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3(1):24–40

    Article  CAS  PubMed  Google Scholar 

  57. Chen Q, Wang J, Liu WN, Zhao Y (2019) Cancer immunotherapies and humanized mouse drug testing platforms. Transl Oncol 12(7):987–995

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dyck L, Mills KHG (2017) Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol 47(5):765–779

    Article  CAS  PubMed  Google Scholar 

  59. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y (2018) Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol 11(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8(9):1069–1086

    Article  PubMed  Google Scholar 

  62. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rohaan MW, Wilgenhof S, Haanen J (2019) Adoptive cellular therapies: the current landscape. Virchows Archiv 474(4):449–461

    Article  PubMed  Google Scholar 

  64. Perica K, Varela JC, Oelke M, Schneck J (2015) Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J 6(1):e0004

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schmitt TM, Stromnes IM, Chapuis AG, Greenberg PD (2015) New strategies in engineering T-cell receptor gene-modified T cells to more effectively target malignancies. Clin Cancer Res 21(23):5191–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sukari A, Nagasaka M, Al-Hadidi A, Lum LG (2016) Cancer immunology and immunotherapy. Anticancer Res 36(11):5593–5606

    Article  CAS  PubMed  Google Scholar 

  67. Rezvani K, Rouce RH (2015) The application of natural killer cell immunotherapy for the treatment of cancer. Front Immunol 6:578

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mehta RS, Rezvani K (2018) Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol 9:283

    Article  PubMed  PubMed Central  Google Scholar 

  69. Iyer RK, Bowles PA, Kim H, Dulgar-Tulloch A (2018) Industrializing autologous adoptive immunotherapies: manufacturing advances and challenges. Front Med 5:150

    Article  Google Scholar 

  70. D'Angelo SP, Melchiori L, Merchant MS, Bernstein D, Glod J, Kaplan R et al (2018) Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 (c259)T cells in synovial sarcoma. Cancer Discov 8(8):944–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29(7):917–924

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ochi T, Fujiwara H, Okamoto S, An J, Nagai K, Shirakata T et al (2011) Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood 118(6):1495–1503

    Article  CAS  PubMed  Google Scholar 

  73. Mastaglio S, Genovese P, Magnani Z, Ruggiero E, Landoni E, Camisa B et al (2017) NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease. Blood 130(5):606–618

    Article  CAS  PubMed  Google Scholar 

  74. Legut M, Dolton G, Mian AA, Ottmann OG, Sewell AK (2018) CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood 131(3):311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miyazaki Y, Fujiwara H, Asai H, Ochi F, Ochi T, Azuma T et al (2013) Development of a novel redirected T-cell-based adoptive immunotherapy targeting human telomerase reverse transcriptase for adult T-cell leukemia. Blood 121(24):4894–4901

    Article  CAS  PubMed  Google Scholar 

  76. Levine BL, Miskin J, Wonnacott K, Keir C (2017) Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev 4:92–101

    Article  CAS  PubMed  Google Scholar 

  77. Harris DT, Kranz DM (2016) Adoptive T cell therapies: A comparison of T cell receptors and chimeric antigen receptors. Trends Pharmacol Sci 37(3):220–230

    Article  CAS  PubMed  Google Scholar 

  78. Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY (2013) Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 119:421–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Roden R, Wu TC (2003) Preventative and therapeutic vaccines for cervical cancer. Expert Rev Vaccines 2(4):495–516

    Article  CAS  PubMed  Google Scholar 

  80. Palucka K, Banchereau J (2013) Dendritic-cell-based therapeutic cancer vaccines. Immunity 39(1):38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li J, Valentin A, Beach RK, Alicea C, Felber BK, Pavlakis GN (2015) DNA is an efficient booster of dendritic cell-based vaccine. Hum Vaccin Immunother 11(8):1927–1935

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hirayama M, Nishimura Y (2016) The present status and future prospects of peptide-based cancer vaccines. Int Immunol 28(7):319–328

    Article  CAS  PubMed  Google Scholar 

  83. Cheever MA, Higano CS (2011) PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 17(11):3520–3526

    Article  PubMed  Google Scholar 

  84. Chang MH, Shau WY, Chen CJ, Wu TC, Kong MS, Liang DC et al (2000) Hepatitis B vaccination and hepatocellular carcinoma rates in boys and girls. JAMA 284(23):3040–3042

    Article  CAS  PubMed  Google Scholar 

  85. Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364(22):2119–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. U'Ren L, Kedl R, Dow S (2006) Vaccination with liposome—DNA complexes elicits enhanced antitumor immunity. Cancer Gene Ther 13(11):1033–1044

    Article  CAS  PubMed  Google Scholar 

  87. Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y et al (2018) Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 12(6):5121–5129

    Article  CAS  PubMed  Google Scholar 

  88. Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F (2008) Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther 8(10):1581–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rehman H, Silk AW, Kane MP, Kaufman HL (2016) Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 4:53

    Article  PubMed  PubMed Central  Google Scholar 

  90. Russell L, Peng KW (2018) The emerging role of oncolytic virus therapy against cancer. Chin Clin Oncol 7(2):16

    Article  PubMed  PubMed Central  Google Scholar 

  91. Goshima F, Esaki S, Luo C, Kamakura M, Kimura H, Nishiyama Y (2014) Oncolytic viral therapy with a combination of HF10, a herpes simplex virus type 1 variant and granulocyte-macrophage colony-stimulating factor for murine ovarian cancer. Int J Cancer 134(12):2865–2877

    Article  CAS  PubMed  Google Scholar 

  92. Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S et al (2006) CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor—armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res 12(1):305–313

    Article  CAS  PubMed  Google Scholar 

  93. Fan J, Jiang H, Cheng L, Liu R (2016) The oncolytic herpes simplex virus vector, G47Δ, effectively targets tamoxifen-resistant breast cancer cells. Oncol Rep 35(3):1741–1749

    Article  CAS  PubMed  Google Scholar 

  94. Noonan AM, Farren MR, Geyer SM, Huang Y, Tahiri S, Ahn D et al (2016) Randomized phase 2 trial of the oncolytic virus pelareorep (Reolysin) in upfront treatment of metastatic pancreatic adenocarcinoma. Mol Ther 24(6):1150–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Taguchi S, Fukuhara H, Todo T (2019) Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives. Jpn J Clin Oncol 49(3):201–209

    Article  PubMed  Google Scholar 

  96. Tanoue K, Wang Y, Ikeda M, Mitsui K, Irie R, Setoguchi T et al (2014) Survivin-responsive conditionally replicating adenovirus kills rhabdomyosarcoma stem cells more efficiently than their progeny. J Transl Med 12:27

    Article  PubMed  PubMed Central  Google Scholar 

  97. Saga K, Kaneda Y (2015) Oncolytic Sendai virus-based virotherapy for cancer: recent advances. Oncolytic Virother 4:141–147

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Schooltink H, Rose-John S (2002) Cytokines as therapeutic drugs. J Interferon Cytokine Res 22(5):505–516

    Article  CAS  PubMed  Google Scholar 

  99. Feldmann M (2008) Many cytokines are very useful therapeutic targets in disease. J Clin Invest 118(11):3533–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ma Z, Li W, Yoshiya S, Xu Y, Hata M, El-Darawish Y et al (2016) Augmentation of immune checkpoint cancer immunotherapy with IL18. Clin Cancer Res 22(12):2969–2980

    Article  CAS  PubMed  Google Scholar 

  101. Dammeijer F, Lau SP, van Eijck CHJ, van der Burg SH, Aerts J (2017) Rationally combining immunotherapies to improve efficacy of immune checkpoint blockade in solid tumors. Cytokine Growth Factor Rev 36:5–15

    Article  CAS  PubMed  Google Scholar 

  102. Baron JA, Sandler RS (2000) Nonsteroidal anti-inflammatory drugs and cancer prevention. Annu Rev Med 51:511–523

    Article  CAS  PubMed  Google Scholar 

  103. García-Rodríguez LA, Huerta-Alvarez C (2001) Reduced risk of colorectal cancer among long-term users of aspirin and nonaspirin nonsteroidal antiinflammatory drugs. Epidemiology 12(1):88–93

    Article  PubMed  Google Scholar 

  104. Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18(55):7908–7916

    Article  CAS  Google Scholar 

  105. Mamytbeková A, Rezábek K, Kacerovská H, Grimová J, Svobodová J (1986) Antimetastatic effect of flurbiprofen and other platelet aggregation inhibitors. Neoplasma 33(4):417–421

    PubMed  Google Scholar 

  106. Moore MA (2001) The role of chemoattraction in cancer metastases. Bioessays 23(8):674–676

    Article  CAS  PubMed  Google Scholar 

  107. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to virchow? Lancet 357(9255):539–545

    Article  CAS  PubMed  Google Scholar 

  108. Balkwill F (2002) Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 13(2):135–141

    Article  CAS  PubMed  Google Scholar 

  109. Borsig L, Wong R, Hynes RO, Varki NM, Varki A (2002) Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci U S A 99(4):2193–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103(3):481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174

    Article  CAS  PubMed  Google Scholar 

  112. Overall CM, López-Otín C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2(9):657–672

    Article  CAS  PubMed  Google Scholar 

  113. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ et al (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341(6142):1236361

    Article  PubMed  Google Scholar 

  114. Olar A, He D, Florentin D, Ding Y, Ayala G (2014) Biologic correlates and significance of axonogenesis in prostate cancer. Hum Pathol 45(7):1358–1364

    Article  PubMed  PubMed Central  Google Scholar 

  115. Pundavela J, Demont Y, Jobling P, Lincz LF, Roselli S, Thorne RF et al (2014) ProNGF correlates with Gleason score and is a potential driver of nerve infiltration in prostate cancer. Am J Pathol 184(12):3156–3162

    Article  CAS  PubMed  Google Scholar 

  116. Faulkner S, Roselli S, Demont Y, Pundavela J, Choquet G, Leissner P et al (2016) ProNGF is a potential diagnostic biomarker for thyroid cancer. Oncotarget 7(19):28488–28497

    Article  PubMed  PubMed Central  Google Scholar 

  117. Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y, Dantes Z et al (2018) β2 Adrenergic-Neurotrophin Feedforward Loop Promotes Pancreatic Cancer. Cancer Cell 33(1):75–90.e7

    Article  CAS  PubMed  Google Scholar 

  118. Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H et al (2017) Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31(1):21–34

    Article  CAS  PubMed  Google Scholar 

  119. Pundavela J, Roselli S, Faulkner S, Attia J, Scott RJ, Thorne RF et al (2015) Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol Oncol 9(8):1626–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Allen JK, Armaiz-Pena GN, Nagaraja AS, Sadaoui NC, Ortiz T, Dood R et al (2018) Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res 78(12):3233–3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li X, Dun MD, Faulkner S, Hondermarck H (2018) Neuroproteins in cancer: assumed bystanders become culprits. Proteomics 18(14):e1800049

    Article  PubMed  Google Scholar 

  122. Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT et al (2014) Denervation suppresses gastric tumorigenesis. Sci Transl Med 6(250):250ra115

    Article  PubMed  PubMed Central  Google Scholar 

  123. Coarfa C, Florentin D, Putluri N, Ding Y, Au J, He D et al (2018) Influence of the neural microenvironment on prostate cancer. Prostate 78(2):128–139

    Article  CAS  PubMed  Google Scholar 

  124. Denk F, Bennett DL, McMahon SB (2017) Nerve growth factor and pain mechanisms. Annu Rev Neurosci 40:307–325

    Article  CAS  PubMed  Google Scholar 

  125. Griffin N, Faulkner S, Jobling P, Hondermarck H (2018) Targeting neurotrophin signaling in cancer: the renaissance. Pharmacol Res 135:12–17

    Article  CAS  PubMed  Google Scholar 

  126. Bapat AA, Munoz RM, Von Hoff DD, Han H (2016) Blocking nerve growth factor signaling reduces the neural invasion potential of pancreatic cancer cells. PLoS One 11(10):e0165586

    Article  PubMed  PubMed Central  Google Scholar 

  127. Buehlmann D, Ielacqua GD, Xandry J, Rudin M (2019) Prospective administration of anti-nerve growth factor treatment effectively suppresses functional connectivity alterations after cancer-induced bone pain in mice. Pain 160(1):151–159

    Article  CAS  PubMed  Google Scholar 

  128. Faulkner S, Jobling P, March B, Jiang CC, Hondermarck H (2019) Tumor neurobiology and the war of nerves in cancer. Cancer Discov 9(6):702–710

    Article  CAS  PubMed  Google Scholar 

  129. Viallard C, Larrivee B (2017) Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20(4):409–426

    Article  CAS  PubMed  Google Scholar 

  130. Crawford Y, Ferrara N (2009) VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res 335(1):261–269

    Article  CAS  PubMed  Google Scholar 

  131. Ohtsu A, Shah MA, Van Cutsem E, Rha SY, Sawaki A, Park SR et al (2011) Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol 29(30):3968–3976

    Article  CAS  PubMed  Google Scholar 

  132. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27(8):1227–1234

    Article  CAS  PubMed  Google Scholar 

  133. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357(26):2666–2676

    Article  CAS  PubMed  Google Scholar 

  134. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356(2):125–134

    Article  CAS  PubMed  Google Scholar 

  135. Jayson GC, Kerbel R, Ellis LM, Harris AL (2016) Antiangiogenic therapy in oncology: current status and future directions. Lancet 388(10043):518–529

    Article  CAS  PubMed  Google Scholar 

  136. Fan F, Samuel S, Gaur P, Lu J, Dallas NA, **a L et al (2011) Chronic exposure of colorectal cancer cells to bevacizumab promotes compensatory pathways that mediate tumor cell migration. Br J Cancer 104(8):1270–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Widakowich C, de Castro G Jr, de Azambuja E, Dinh P, Awada A (2007) Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 12(12):1443–1455

    Article  CAS  PubMed  Google Scholar 

  138. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9):987–989

    Article  CAS  PubMed  Google Scholar 

  139. Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J et al (2008) A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456(7223):809–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tolaney SM, Boucher Y, Duda DG, Martin JD, Seano G, Ancukiewicz M et al (2015) Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci U S A 112(46):14325–14330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563

    CAS  PubMed  Google Scholar 

  142. Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26(5):605–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1):83–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379(6560):88–91

    Article  CAS  PubMed  Google Scholar 

  145. Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8(4):210–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J et al (2012) Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A 109(43):17561–17566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Martin JD, Fukumura D, Duda DG, Boucher Y, Jain RK (2016) Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity. Cold Spring Harb Perspect Med 6(12):a027094

    Article  PubMed  PubMed Central  Google Scholar 

  148. Chen BB, Lu YS, Lin CH, Chen WW, Wu PF, Hsu CY et al (2016) A pilot study to determine the timing and effect of bevacizumab on vascular normalization of metastatic brain tumors in breast cancer. BMC Cancer 16:466

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lin A, Hahn SM (2012) Hypoxia imaging markers and applications for radiation treatment planning. Semin Nucl Med 42(5):343–352

    Article  PubMed  Google Scholar 

  150. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD et al (2007) Long-term mortality after gastric bypass surgery. N Engl J Med 357(8):753–761

    Article  CAS  PubMed  Google Scholar 

  151. Bowker SL, Majumdar SR, Veugelers P, Johnson JA (2006) Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29(2):254–258

    Article  PubMed  Google Scholar 

  152. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330(7503):1304–1305

    Article  PubMed  PubMed Central  Google Scholar 

  153. Folkerd EJ, Dowsett M (2010) Influence of sex hormones on cancer progression. J Clin Oncol 28(26):4038–4044

    Article  CAS  PubMed  Google Scholar 

  154. Crawford ED, Hou AH (2009) The role of LHRH antagonists in the treatment of prostate cancer. Oncology 23(7):626–630

    PubMed  Google Scholar 

  155. Smith CL, Nawaz Z, O'Malley BW (1997) Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 11(6):657–666

    Article  CAS  PubMed  Google Scholar 

  156. Dutertre M, Smith CL (2000) Molecular mechanisms of selective estrogen receptor modulator (SERM) action. J Pharmacol Exp Ther 295(2):431–437

    CAS  PubMed  Google Scholar 

  157. Schellhammer PF, Sharifi R, Block NL, Soloway MS, Venner PM, Patterson AL et al (1997) Clinical benefits of bicalutamide compared with flutamide in combined androgen blockade for patients with advanced prostatic carcinoma: final report of a double-blind, randomized, multicenter trial. Casodex Combination Study Group. Urology 50(3):330–336

    Article  CAS  PubMed  Google Scholar 

  158. Dorgan JF, Stanczyk FZ, Longcope C, Stephenson HE Jr, Chang L, Miller R et al (1997) Relationship of serum dehydroepiandrosterone (DHEA), DHEA sulfate, and 5-androstene-3 beta, 17 beta-diol to risk of breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev 6(3):177–181

    CAS  PubMed  Google Scholar 

  159. McKenna NJ, Lanz RB, O'Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20(3):321–344

    CAS  PubMed  Google Scholar 

  160. Attard G, Reid AH, Yap TA, Raynaud F, Dowsett M, Settatree S et al (2008) Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol 26(28):4563–4571

    Article  CAS  PubMed  Google Scholar 

  161. Attard G, Reid AH, A'Hern R, Parker C, Oommen NB, Folkerd E et al (2009) Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J Clin Oncol 27(23):3742–3748

    Article  CAS  PubMed  Google Scholar 

  162. Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the allee effect. Trends Ecol Evol 14(10):405–410

    Article  CAS  PubMed  Google Scholar 

  163. Palomares F, Godoy JA, Lopez-Bao JV, Rodriguez A, Roques S, Casas-Marce M et al (2012) Possible extinction vortex for a population of Iberian lynx on the verge of extirpation. Conserv Biol 26(4):689–697

    Article  PubMed  Google Scholar 

  164. Korolev KS, Xavier JB, Gore J (2014) Turning ecology and evolution against cancer. Nat Rev Cancer 14(5):371–380

    Article  CAS  PubMed  Google Scholar 

  165. Johnson KE, Howard G, Mo W, Strasser MK, Lima E, Huang S et al (2019) Cancer cell population growth kinetics at low densities deviate from the exponential growth model and suggest an allee effect. PLoS Biol 17(8):e3000399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Morrow M, Harris JR, Schnitt SJ (2012) Surgical margins in lumpectomy for breast cancer—bigger is not better. N Engl J Med 367(1):79–82

    Article  PubMed  Google Scholar 

  167. Lichter AS, Lippman ME, Danforth DN Jr, d'Angelo T, Steinberg SM, deMoss E et al (1992) Mastectomy versus breast-conserving therapy in the treatment of stage I and II carcinoma of the breast: a randomized trial at the National Cancer Institute. J Clin Oncol 10(6):976–983

    Article  CAS  PubMed  Google Scholar 

  168. van Dongen JA, Bartelink H, Fentiman IS, Lerut T, Mignolet F, Olthuis G et al (1992) Factors influencing local relapse and survival and results of salvage treatment after breast-conserving therapy in operable breast cancer: EORTC trial 10801, breast conservation compared with mastectomy in TNM stage I and II breast cancer. Eur J Cancer 28a(4–5):801–805

    Article  PubMed  Google Scholar 

  169. Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER et al (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347(16):1233–1241

    Article  PubMed  Google Scholar 

  170. van Maaren MC, de Munck L, de Bock GH, Jobsen JJ, van Dalen T, Linn SC et al (2016) 10 year survival after breast-conserving surgery plus radiotherapy compared with mastectomy in early breast cancer in The Netherlands: a population-based study. Lancet Oncol 17(8):1158–1170

    Article  PubMed  Google Scholar 

  171. Liu J, Lao L, Chen J, Li J, Zeng W, Zhu X et al (2021) The IRENA lncRNA converts chemotherapy-polarized tumor-suppressing macrophages to tumor-promoting phenotypes in breast cancer. Nat Cancer 2(4):457–473

    Article  CAS  PubMed  Google Scholar 

  172. Su S, Zhao J, **ng Y, Zhang X, Liu J, Ouyang Q et al (2018) Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell 175(2):442–57.e23

    Article  CAS  PubMed  Google Scholar 

  173. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P et al (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803

    Article  CAS  PubMed  Google Scholar 

  174. Di Leo A, Jerusalem G, Petruzelka L, Torres R, Bondarenko IN, Khasanov R et al (2010) Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. J Clin Oncol 28(30):4594–4600

    Article  PubMed  Google Scholar 

  175. Fisher B, Jeong JH, Anderson S, Bryant J, Fisher ER, Wolmark N (2002) Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N Engl J Med 347(8):567–575

    Article  PubMed  Google Scholar 

  176. Magbanua MJM, Yau C, Wolf DM, Lee JS, Chattopadhyay A, Scott JH et al (2019) Synchronous detection of circulating tumor cells in blood and disseminated tumor cells in bone marrow predicts adverse outcome in early breast cancer. Clin Cancer Res 25(17):5388–5397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Perez EA, Romond EH, Suman VJ, Jeong JH, Sledge G, Geyer CE Jr et al (2014) Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol 32(33):3744–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Balamuth NJ, Womer RB (2010) Ewing's sarcoma. Lancet Oncol 11(2):184–192

    Article  CAS  PubMed  Google Scholar 

  179. Kotler BP, Blaustein L, Brown JS (1992) Predator facilitation: the combined effect of snakes and owls on the foraging behavior of gerbils. Ann Zool Fenn 29(4):199–206

    Google Scholar 

  180. Efferth T, Saeed MEM, Kadioglu O, Seo EJ, Shirooie S, Mbaveng AT et al (2020) Collateral sensitivity of natural products in drug-resistant cancer cells. Biotechnol Adv 38:107342

    Article  CAS  PubMed  Google Scholar 

  181. Zhao B, Sedlak JC, Srinivas R, Creixell P, Pritchard JR, Tidor B et al (2016) Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 165(1):234–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gatenby RA, Zhang J, Brown JS (2019) First strike-second strike strategies in metastatic cancer: lessons from the evolutionary dynamics of extinction. Cancer Res 79(13):3174–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zeilinger AR, Olson DM, Andow DA (2016) Competitive release and outbreaks of non-target pests associated with transgenic Bt cotton. Ecol Appl 26(4):1047–1054

    Article  PubMed  Google Scholar 

  184. Gatenby RA (2009) A change of strategy in the war on cancer. Nature 459(7246):508–509

    Article  CAS  PubMed  Google Scholar 

  185. Gatenby RA, Silva AS, Gillies RJ, Frieden BR (2009) Adaptive therapy. Cancer Res 69(11):4894–4903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Enriquez-Navas PM, Kam Y, Das T, Hassan S, Silva A, Foroutan P et al (2016) Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Science Transl Med 8(327):327ra24

    Article  Google Scholar 

  187. Zhang J, Cunningham JJ, Brown JS, Gatenby RA (2017) Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat Commun 8(1):1816

    Article  PubMed  PubMed Central  Google Scholar 

  188. Zhang J, Fishman MN, Brown J, Gatenby RA (2019) Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer (mCRPC): updated analysis of the adaptive abiraterone (abi) study (NCT02415621). J Clin Oncol 37:5041

    Article  Google Scholar 

  189. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P et al (2013) Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 368(2):138–148

    Article  CAS  PubMed  Google Scholar 

  190. West J, You L, Zhang J, Gatenby RA, Brown JS, Newton PK et al (2020) Towards multidrug adaptive therapy. Cancer Res 80(7):1578–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwei Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saw, P.E., Song, E. (2023). Tumor Ecosystem-Directed Therapeutic Strategies. In: Song, E. (eds) Tumor Ecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-99-1183-7_30

Download citation

Publish with us

Policies and ethics

Navigation