Systemic Onco-Spheres: Viruses in Cancer

  • Chapter
  • First Online:
Tumor Ecosystem
  • 342 Accesses

Abstract

It was recently estimated that a virus infection is the central cause of more than 1,400,000 cancer cases annually, representing approximated 10% of the worldwide cancer burden. DNA viruses that have been confirmed to cause cancer are Epstein–Barr virus (EBV), hepatitis B virus (HBV), human papillomavirus (HPV), and human herpesvirus 8 (HSV-8). Some examples of cancer-causing RNA viruses are the human T lymphotropic virus type 1 (HTLV-1) and hepatitis C virus (HCV). The study of viruses and human cancer has sparked hope for develo** novel ways to prevent cancer-causing viral infection. In this chapter, we decipher the general mechanism of cancer-causing virus and their general principles. We also summarize the common mechanism of direct and indirect carcinogenesis caused by virus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liao JB (2006) Viruses and human cancer. Yale J Biol Med 79(3–4):115–122

    CAS  PubMed  Google Scholar 

  2. Morales-Sanchez A, Fuentes-Panana EM (2014) Human viruses and cancer. Viruses 6(10):4047–4079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rous P (1979) A transmissible avian neoplasm. (Sarcoma of the common fowl) by Peyton Rous, M.D., Experimental Medicine for Sept. 1, 1910, vol. 12, pp.696-705. J Exp Med 150(4):738–753

    Article  CAS  PubMed  Google Scholar 

  4. Rous P (1911) A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13(4):397–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ellerman V, Bang O (1908) Experimentelle leukämie bei hühnern. II. Zent Bakteriol ParasitenkdInfectionskr Hyg Abt Orig 63:595–609

    Google Scholar 

  6. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1(7335):702–703

    Article  CAS  PubMed  Google Scholar 

  7. Dürst M, Gissmann L, Ikenberg H, zur Hausen H (1983) A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci U S A 80(12):3812–3815

    Article  PubMed Central  PubMed  Google Scholar 

  8. Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W, zur Hausen H. (1984) A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J 3(5):1151–1157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Moore PS, Chang Y (2010) Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer 10(12):878–889

    Article  CAS  PubMed  Google Scholar 

  10. Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118(12):3030–3044

    Article  CAS  PubMed  Google Scholar 

  11. Koch R (1876) Untersuchungen über bakterien: V. Die ätiologie der milzbrand-krankheit, begründet auf die entwicklungsgeschichte des bacillus anthracis [investigations into bacteria: V. The etiology of anthrax, based on the ontogenesis of bacillus anthracis]. Beitr Biol Pflanz 2(2):277–310

    Google Scholar 

  12. Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58(5):295–300

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Thompson MP, Kurzrock R (2004) Epstein-Barr virus and cancer. Clin Cancer Res 10(3):803–821

    Article  CAS  PubMed  Google Scholar 

  14. Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N (1998) Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci U S A 95(20):11963–11968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Beasley RP (1988) Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 61(10):1942–1956

    Article  CAS  PubMed  Google Scholar 

  16. Lavanchy D (2004) Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 11(2):97–107

    Article  CAS  PubMed  Google Scholar 

  17. Fattovich G, Giustina G, Degos F, Tremolada F, Diodati G, Almasio P et al (1997) Morbidity and mortality in compensated cirrhosis type C: a retrospective follow-up study of 384 patients. Gastroenterology 112(2):463–472

    Article  CAS  PubMed  Google Scholar 

  18. The Cancer of the Liver Italian Program (CLIP) Investigators (1998) A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients: the Cancer of the Liver Italian Program (CLIP) investigators. Hepatology 28(3):751–755

    Article  Google Scholar 

  19. Okuda K, Ohtsuki T, Obata H, Tomimatsu M, Okazaki N, Hasegawa H et al (1985) Natural history of hepatocellular carcinoma and prognosis in relation to treatment. Study of 850 patients. Cancer 56(4):918–928

    Article  CAS  PubMed  Google Scholar 

  20. Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362(9399):1907–1917

    Article  PubMed  Google Scholar 

  21. Ni YH, Chang MH, Huang LM, Chen HL, Hsu HY, Chiu TY et al (2001) Hepatitis B virus infection in children and adolescents in a hyperendemic area: 15 years after mass hepatitis B vaccination. Ann Intern Med 135(9):796–800

    Article  CAS  PubMed  Google Scholar 

  22. Ramsay M, Gay N, Balogun K, Collins M (1998) Control of hepatitis B in the United Kingdom. Vaccine 16(Suppl):S52–S55

    Article  PubMed  Google Scholar 

  23. Iwarson S (1998) Report from working group 3 (The Czech Republic, Denmark, Finland, Norway, The Netherlands, Slovakia, Sweden and the UK). Vaccine 16(Suppl):S63–S64

    Article  PubMed  Google Scholar 

  24. Niederau C, Heintges T, Lange S, Goldmann G, Niederau CM, Mohr L et al (1996) Long-term follow-up of HBeAg-positive patients treated with interferon alfa for chronic hepatitis B. N Engl J Med 334(22):1422–1427

    Article  CAS  PubMed  Google Scholar 

  25. Lampertico P, Del Ninno E, Viganò M, Romeo R, Donato MF, Sablon E et al (2003) Long-term suppression of hepatitis B e antigen-negative chronic hepatitis B by 24-month interferon therapy. Hepatology 37(4):756–763

    Article  CAS  PubMed  Google Scholar 

  26. Yuen MF, Hui CK, Cheng CC, Wu CH, Lai YP, Lai CL (2001) Long-term follow-up of interferon alfa treatment in Chinese patients with chronic hepatitis B infection: The effect on hepatitis B e antigen seroconversion and the development of cirrhosis-related complications. Hepatology 34(1):139–145

    Article  CAS  PubMed  Google Scholar 

  27. Liaw YF, Sung JJ, Chow WC, Farrell G, Lee CZ, Yuen H et al (2004) Lamivudine for patients with chronic hepatitis B and advanced liver disease. N Engl J Med 351(15):1521–1531

    Article  CAS  PubMed  Google Scholar 

  28. Lai CL, Dienstag J, Schiff E, Leung NW, Atkins M, Hunt C et al (2003) Prevalence and clinical correlates of YMDD variants during lamivudine therapy for patients with chronic hepatitis B. Clin Infect Dis 36(6):687–696

    Article  CAS  PubMed  Google Scholar 

  29. Manns MP, Wedemeyer H, Cornberg M (2006) Treating viral hepatitis C: efficacy, side effects, and complications. Gut 55(9):1350–1359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Schiff ER (2006) Prevention of mortality from hepatitis B and hepatitis C. Lancet 368(9539):896–897

    Article  PubMed  Google Scholar 

  31. Terrault NA, Berenguer M (2006) Treating hepatitis C infection in liver transplant recipients. Liver Transpl 12(8):1192–1204

    Article  PubMed  Google Scholar 

  32. Bartenschlager R (2002) Hepatitis C virus replicons: potential role for drug development. Nat Rev Drug Discov 1(11):911–916

    Article  CAS  PubMed  Google Scholar 

  33. Mercer DF, Schiller DE, Elliott JF, Douglas DN, Hao C, Rinfret A et al (2001) Hepatitis C virus replication in mice with chimeric human livers. Nat Med 7(8):927–933

    Article  CAS  PubMed  Google Scholar 

  34. Meuleman P, Libbrecht L, De Vos R, de Hemptinne B, Gevaert K, Vandekerckhove J et al (2005) Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera. Hepatology 41(4):847–856

    Article  CAS  Google Scholar 

  35. Borza CM, Hutt-Fletcher LM (2002) Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat Med 8(6):594–599

    Article  CAS  PubMed  Google Scholar 

  36. Papadopoulos EB, Ladanyi M, Emanuel D, Mackinnon S, Boulad F, Carabasi MH et al (1994) Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 330(17):1185–1191

    Article  CAS  PubMed  Google Scholar 

  37. Haque T, Wilkie GM, Taylor C, Amlot PL, Murad P, Iley A et al (2002) Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 360(9331):436–442

    Article  PubMed  Google Scholar 

  38. Gottschalk S, Ng CY, Perez M, Smith CA, Sample C, Brenner MK et al (2001) An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood 97(4):835–843

    Article  CAS  PubMed  Google Scholar 

  39. Jackman WT, Mann KA, Hoffmann HJ, Spaete RR (1999) Expression of Epstein-Barr virus gp350 as a single chain glycoprotein for an EBV subunit vaccine. Vaccine 17(7–8):660–668

    Article  CAS  PubMed  Google Scholar 

  40. Thorley-Lawson DA, Poodry CA (1982) Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo. J Virol 43(2):730–736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Gu SY, Huang TM, Ruan L, Miao YH, Lu H, Chu CM et al (1995) First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen. Dev Biol Stand 84:171–177

    CAS  PubMed  Google Scholar 

  42. Donati D, Espmark E, Kironde F, Mbidde EK, Kamya M, Lundkvist A et al (2006) Clearance of circulating Epstein-Barr virus DNA in children with acute malaria after antimalaria treatment. J Infect Dis 193(7):971–977

    Article  CAS  Google Scholar 

  43. Ho JH (1978) An epidemiologic and clinical study of nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 4(3–4):182–198

    CAS  PubMed  Google Scholar 

  44. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM et al (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266(5192):1865–1869

    Article  CAS  PubMed  Google Scholar 

  45. Sarid R, Olsen SJ, Moore PS (1999) Kaposi’s sarcoma-associated herpesvirus: epidemiology, virology, and molecular biology. Adv Virus Res 52:139–232

    Article  CAS  PubMed  Google Scholar 

  46. Flore O, Rafii S, Ely S, O’Leary JJ, Hyjek EM, Cesarman E (1998) Transformation of primary human endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Nature 394(6693):588–592

    Article  CAS  PubMed  Google Scholar 

  47. Martin DF, Kuppermann BD, Wolitz RA, Palestine AG, Li H, Robinson CA (1999) Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche ganciclovir study group. N Engl J Med 340(14):1063–1070

    Article  CAS  PubMed  Google Scholar 

  48. Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS et al (1998) G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391(6662):86–89

    Article  CAS  PubMed  Google Scholar 

  49. Montaner S, Sodhi A, Ramsdell AK, Martin D, Hu J, Sawai ET et al (2006) The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor as a therapeutic target for the treatment of Kaposi’s sarcoma. Cancer Res 66(1):168–174

    Article  CAS  PubMed  Google Scholar 

  50. Gingues S, Gill MJ (2006) The impact of highly active antiretroviral therapy on the incidence and outcomes of AIDS-defining cancers in Southern Alberta. HIV Med 7(6):369–377

    Article  CAS  PubMed  Google Scholar 

  51. Wallin KL, Wiklund F, Angström T, Bergman F, Stendahl U, Wadell G et al (1999) Type-specific persistence of human papillomavirus DNA before the development of invasive cervical cancer. N Engl J Med 341(22):1633–1638

    Article  CAS  PubMed  Google Scholar 

  52. von Knebel DM, Oltersdorf T, Schwarz E, Gissmann L (1988) Correlation of modified human papilloma virus early gene expression with altered growth properties in C4-1 cervical carcinoma cells. Cancer Res 48(13):3780–3786

    Google Scholar 

  53. Generation of heart muscle cells from blood or skin cells of breast cancer patients. https://ClinicalTrials.gov/show/NCT02772367

  54. Frazer IH (2004) Prevention of cervical cancer through papillomavirus vaccination. Nat Rev Immunol 4(1):46–54

    Article  CAS  PubMed  Google Scholar 

  55. Palefsky JM, Holly EA (2003) Immunosuppression and co-infection with HIV. J Natl Cancer Inst Monogr 31:41–46

    Article  Google Scholar 

  56. Halpert R, Fruchter RG, Sedlis A, Butt K, Boyce JG, Sillman FH (1986) Human papillomavirus and lower genital neoplasia in renal transplant patients. Obstet Gynecol 68(2):251–258

    CAS  PubMed  Google Scholar 

  57. Petry KU, Scheffel D, Bode U, Gabrysiak T, Köchel H, Kupsch E et al (1994) Cellular immunodeficiency enhances the progression of human papillomavirus-associated cervical lesions. Int J Cancer 57(6):836–840

    Article  CAS  PubMed  Google Scholar 

  58. Frisch M, Biggar RJ, Goedert JJ (2000) Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst 92(18):1500–1510

    Article  CAS  PubMed  Google Scholar 

  59. Koutsky LA, Ault KA, Wheeler CM, Brown DR, Barr E, Alvarez FB et al (2002) A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 347(21):1645–1651

    Article  CAS  PubMed  Google Scholar 

  60. Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A et al (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 364(9447):1757–1765

    Article  CAS  PubMed  Google Scholar 

  61. Kaufmann AM, Stern PL, Rankin EM, Sommer H, Nuessler V, Schneider A et al (2002) Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res 8(12):3676–3685

    CAS  PubMed  Google Scholar 

  62. Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP et al (2004) ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 103(2):317–326

    Article  CAS  PubMed  Google Scholar 

  63. Sheets EE, Urban RG, Crum CP, Hedley ML, Politch JA, Gold MA et al (2003) Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am J Obstet Gynecol 188(4):916–926

    Article  CAS  PubMed  Google Scholar 

  64. Klencke B, Matijevic M, Urban RG, Lathey JL, Hedley ML, Berry M et al (2002) Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a phase I study of ZYC101. Clin Cancer Res 8(5):1028–1037

    CAS  PubMed  Google Scholar 

  65. Gallo RC, Kalyanaraman VS, Sarngadharan MG, Sliski A, Vonderheid EC, Maeda M et al (1983) Association of the human type C retrovirus with a subset of adult T-cell cancers. Cancer Res 43(8):3892–3899

    CAS  PubMed  Google Scholar 

  66. Duggan DB, Ehrlich GD, Davey FP, Kwok S, Sninsky J, Goldberg J et al (1988) HTLV-I-induced lymphoma mimicking Hodgkin’s disease. Diagnosis by polymerase chain reaction amplification of specific HTLV-I sequences in tumor DNA. Blood 71(4):1027–1032

    Article  CAS  PubMed  Google Scholar 

  67. Kozako T, Arima N, Toji S, Masamoto I, Akimoto M, Hamada H et al (2006) Reduced frequency, diversity, and function of human T cell leukemia virus type 1-specific CD8+ T cell in adult T cell leukemia patients. J Immunol 177(8):5718–5726

    Article  CAS  PubMed  Google Scholar 

  68. Lynch MP, Kaumaya PT (2006) Advances in HTLV-1 peptide vaccines and therapeutics. Curr Protein Pept Sci 7(2):137–145

    Article  CAS  PubMed  Google Scholar 

  69. Zella D, Gallo RC (2021) Viruses and bacteria associated with cancer: an overview. Viruses 13(6):1039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Loeb LA, Springgate CF, Battula N (1974) Errors in DNA replication as a basis of malignant changes. Cancer Res 34(9):2311–2321

    CAS  PubMed  Google Scholar 

  71. Prindle MJ, Fox EJ, Loeb LA (2010) The mutator phenotype in cancer: molecular mechanisms and targeting strategies. Curr Drug Targets 11(10):1296–1303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Coleman WB (2003) Mechanisms of human hepatocarcinogenesis. Curr Mol Med 3(6):573–588

    Article  CAS  PubMed  Google Scholar 

  73. Zucman-Rossi J, Laurent-Puig P (2007) Genetic diversity of hepatocellular carcinomas and its potential impact on targeted therapies. Pharmacogenomics 8(8):997–1003

    Article  CAS  PubMed  Google Scholar 

  74. Correa P, Piazuelo MB (2012) The gastric precancerous cascade. J Dig Dis 13(1):2–9

    Article  PubMed Central  PubMed  Google Scholar 

  75. Hatakeyama M, Higashi H (2005) Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci 96(12):835–843

    Article  CAS  PubMed  Google Scholar 

  76. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253(5015):49–53

    Article  CAS  PubMed  Google Scholar 

  77. Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351(6326):453–456

    Article  CAS  Google Scholar 

  78. Khidr L, Chen PL (2006) RB, the conductor that orchestrates life, death and differentiation. Oncogene 25(38):5210–5219

    Article  CAS  PubMed  Google Scholar 

  79. Lee JM, Bernstein A (1995) Apoptosis, cancer and the p53 tumour suppressor gene. Cancer Metastasis Rev 14(2):149–161

    Article  CAS  PubMed  Google Scholar 

  80. Amundson SA, Myers TG, Fornace AJ Jr (1998) Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene 17(25):3287–3299

    Article  PubMed  Google Scholar 

  81. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63(6):1129–1136

    Article  CAS  PubMed  Google Scholar 

  82. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75(3):495–505

    Article  CAS  PubMed  Google Scholar 

  83. Reznikoff CA, Yeager TR, Belair CD, Savelieva E, Puthenveettil JA, Stadler WM (1996) Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. Cancer Res 56(13):2886–2890

    CAS  PubMed  Google Scholar 

  84. Ghittoni R, Accardi R, Hasan U, Gheit T, Sylla B, Tommasino M (2010) The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes 40(1):1–13

    Article  CAS  PubMed  Google Scholar 

  85. Dyson N, Howley PM, Münger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243(4893):934–937

    Article  CAS  PubMed  Google Scholar 

  86. Giam CZ, Jeang KT (2007) HTLV-1 tax and adult T-cell leukemia. Front Biosci 12:1496–1507

    Article  CAS  PubMed  Google Scholar 

  87. Pise-Masison CA, Brady JN (2005) Setting the stage for transformation: HTLV-1 Tax inhibition of p53 function. Front Biosci 10:919–930

    Article  CAS  PubMed  Google Scholar 

  88. Haller K, Wu Y, Derow E, Schmitt I, Jeang KT, Grassmann R (2002) Physical interaction of human T-cell leukemia virus type 1 Tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein. Mol Cell Biol 22(10):3327–3338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Suzuki T, Narita T, Uchida-Toita M, Yoshida M (1999) Down-regulation of the INK4 family of cyclin-dependent kinase inhibitors by tax protein of HTLV-1 through two distinct mechanisms. Virology 259(2):384–391

    Article  CAS  PubMed  Google Scholar 

  90. Suzuki T, Kitao S, Matsushime H, Yoshida M (1996) HTLV-1 tax protein interacts with cyclin-dependent kinase inhibitor p16INK4A and counteracts its inhibitory activity towards CDK4. EMBO J 15(7):1607–1614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Satou Y, Yasunaga J, Yoshida M, Matsuoka M (2006) HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci U S A 103(3):720–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Cai QL, Knight JS, Verma SC, Zald P, Robertson ES (2006) EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog 2(10):e116

    Article  PubMed Central  PubMed  Google Scholar 

  93. Friborg J Jr, Kong W, Hottiger MO, Nabel GJ (1999) p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402(6764):889–894

    Article  CAS  PubMed  Google Scholar 

  94. Si H, Robertson ES (2006) Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen induces chromosomal instability through inhibition of p53 function. J Virol 80(2):697–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Klein G, Klein E, Kashuba E (2010) Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes. Biochem Biophys Res Commun 396(1):67–73

    Article  CAS  PubMed  Google Scholar 

  96. Spender LC, Cannell EJ, Hollyoake M, Wensing B, Gawn JM, Brimmell M et al (1999) Control of cell cycle entry and apoptosis in B lymphocytes infected by Epstein-Barr virus. J Virol 73(6):4678–4688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Mei YP, Zhou JM, Wang Y, Huang H, Deng R, Feng GK et al (2007) Silencing of LMP1 induces cell cycle arrest and enhances chemosensitivity through inhibition of AKT signaling pathway in EBV-positive nasopharyngeal carcinoma cells. Cell Cycle 6(11):1379–1385

    Article  CAS  PubMed  Google Scholar 

  98. Portis T, Longnecker R (2004) Epstein-Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene 23(53):8619–8628

    Article  CAS  PubMed  Google Scholar 

  99. Desbien AL, Kappler JW, Marrack P (2009) The Epstein-Barr virus Bcl-2 homolog, BHRF1, blocks apoptosis by binding to a limited amount of bim. Proc Natl Acad Sci U S A 106(14):5663–5668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Saggioro D, Silic-Benussi M, Biasiotto R, D’Agostino DM, Ciminale V (2009) Control of cell death pathways by HTLV-1 proteins. Front Biosci 14(9):3338–3351

    Article  CAS  Google Scholar 

  101. Underbrink MP, Howie HL, Bedard KM, Koop JI, Galloway DA (2008) E6 proteins from multiple human betapapillomavirus types degrade Bak and protect keratinocytes from apoptosis after UVB irradiation. J Virol 82(21):10408–10417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Garnett TO, Filippova M, Duerksen-Hughes PJ (2006) Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ 13(11):1915–1926

    Article  CAS  PubMed  Google Scholar 

  103. Yuan H, Fu F, Zhuo J, Wang W, Nishitani J, An DS et al (2005) Human papillomavirus type 16 E6 and E7 oncoproteins upregulate c-IAP2 gene expression and confer resistance to apoptosis. Oncogene 24(32):5069–5078

    Article  CAS  PubMed  Google Scholar 

  104. Filippova M, Parkhurst L, Duerksen-Hughes PJ (2004) The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem 279(24):25729–25744

    Article  CAS  PubMed  Google Scholar 

  105. Du J, Chen GG, Vlantis AC, Chan PK, Tsang RK, van Hasselt CA (2004) Resistance to apoptosis of HPV 16-infected laryngeal cancer cells is associated with decreased Bak and increased Bcl-2 expression. Cancer Lett 205(1):81–88

    Article  CAS  PubMed  Google Scholar 

  106. Becker SA, Lee TH, Butel JS, Slagle BL (1998) Hepatitis B virus X protein interferes with cellular DNA repair. J Virol 72(1):266–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Aweya JJ, Tan YJ (2011) Modulation of programmed cell death pathways by the hepatitis C virus. Front Biosci 16(2):608–618

    Article  CAS  Google Scholar 

  108. Plug-DeMaggio AW, Sundsvold T, Wurscher MA, Koop JI, Klingelhutz AJ, McDougall JK (2004) Telomere erosion and chromosomal instability in cells expressing the HPV oncogene 16E6. Oncogene 23(20):3561–3571

    Article  CAS  PubMed  Google Scholar 

  109. Duensing S, Münger K (2002) The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res 62(23):7075–7082

    CAS  PubMed  Google Scholar 

  110. Duensing S, Duensing A, Crum CP, Münger K (2001) Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res 61(6):2356–2360

    CAS  PubMed  Google Scholar 

  111. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S et al (2000) The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A 97(18):10002–10007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Chen JJ (2010) Genomic instability induced by human papillomavirus oncogenes. N Am J Med Sci (Boston) 3(2):43–47

    Article  PubMed  Google Scholar 

  113. Bornkamm GW (2009) Epstein-Barr virus and its role in the pathogenesis of Burkitt’s lymphoma: an unresolved issue. Semin Cancer Biol 19(6):351–365

    Article  CAS  PubMed  Google Scholar 

  114. Heath E, Begue-Pastor N, Chaganti S, Croom-Carter D, Shannon-Lowe C, Kube D et al (2012) Epstein-Barr virus infection of naĂŻve B cells in vitro frequently selects clones with mutated immunoglobulin genotypes: implications for virus biology. PLoS Pathog 8(5):e1002697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Marriott SJ, Lemoine FJ, Jeang KT (2002) Damaged DNA and miscounted chromosomes: human T cell leukemia virus type I tax oncoprotein and genetic lesions in transformed cells. J Biomed Sci 9(4):292–298

    Article  CAS  PubMed  Google Scholar 

  116. Lemoine FJ, Marriott SJ (2002) Genomic instability driven by the human T-cell leukemia virus type I (HTLV-I) oncoprotein, Tax. Oncogene 21(47):7230–7234

    Article  CAS  PubMed  Google Scholar 

  117. Chandhasin C, Ducu RI, Berkovich E, Kastan MB, Marriott SJ (2008) Human T-cell leukemia virus type 1 tax attenuates the ATM-mediated cellular DNA damage response. J Virol 82(14):6952–6961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Kao SY, Lemoine FJ, Marriott SJ (2001) p53-independent induction of apoptosis by the HTLV-I tax protein following UV irradiation. Virology 291(2):292–298

    Article  CAS  PubMed  Google Scholar 

  119. ** DY, Spencer F, Jeang KT (1998) Human T cell leukemia virus type 1 oncoprotein tax targets the human mitotic checkpoint protein MAD1. Cell 93(1):81–91

    Article  CAS  PubMed  Google Scholar 

  120. Liu B, Hong S, Tang Z, Yu H, Giam CZ (2005) HTLV-I tax directly binds the Cdc20-associated anaphase-promoting complex and activates it ahead of schedule. Proc Natl Acad Sci U S A 102(1):63–68

    Article  CAS  PubMed  Google Scholar 

  121. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315(5820):1850–1853

    Article  CAS  PubMed  Google Scholar 

  122. Terrin L, Dal Col J, Rampazzo E, Zancai P, Pedrotti M, Ammirabile G et al (2008) Latent membrane protein 1 of Epstein-Barr virus activates the hTERT promoter and enhances telomerase activity in B lymphocytes. J Virol 82(20):10175–10187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Zhang X, Dong N, Zhang H, You J, Wang H, Ye L (2005) Effects of hepatitis B virus X protein on human telomerase reverse transcriptase expression and activity in hepatoma cells. J Lab Clin Med 145(2):98–104

    Article  CAS  PubMed  Google Scholar 

  124. Verma SC, Borah S, Robertson ES (2004) Latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus up-regulates transcription of human telomerase reverse transcriptase promoter through interaction with transcription factor Sp1. J Virol 78(19):10348–10359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Gewin L, Myers H, Kiyono T, Galloway DA (2004) Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev 18(18):2269–2282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Chen X, Kamranvar SA, Masucci MG (2014) Tumor viruses and replicative immortality--avoiding the telomere hurdle. Semin Cancer Biol 26:43–51

    Article  PubMed  Google Scholar 

  127. Ohashi M, Sakurai M, Higuchi M, Mori N, Fukushi M, Oie M et al (2004) Human T-cell leukemia virus type 1 tax oncoprotein induces and interacts with a multi-PDZ domain protein, MAGI-3. Virology 320(1):52–62

    Article  CAS  PubMed  Google Scholar 

  128. Glaunsinger BA, Lee SS, Thomas M, Banks L, Javier R (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19(46):5270–5280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Rousset R, Fabre S, Desbois C, Bantignies F, Jalinot P (1998) The C-terminus of the HTLV-1 tax oncoprotein mediates interaction with the PDZ domain of cellular proteins. Oncogene 16(5):643–654

    Article  CAS  PubMed  Google Scholar 

  130. Lee SS, Weiss RS, Javier RT (1997) Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A 94(13):6670–6675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Spanos WC, Hoover A, Harris GF, Wu S, Strand GL, Anderson ME et al (2008) The PDZ binding motif of human papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with ras for invasive growth. J Virol 82(5):2493–2500

    Article  CAS  PubMed  Google Scholar 

  132. Spanos WC, Geiger J, Anderson ME, Harris GF, Bossler AD, Smith RB et al (2008) Deletion of the PDZ motif of HPV16 E6 preventing immortalization and anchorage-independent growth in human tonsil epithelial cells. Head Neck 30(2):139–147

    Article  PubMed Central  PubMed  Google Scholar 

  133. **e L, Yamamoto B, Haoudi A, Semmes OJ, Green PL (2006) PDZ binding motif of HTLV-1 tax promotes virus-mediated T-cell proliferation in vitro and persistence in vivo. Blood 107(5):1980–1988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Hirata A, Higuchi M, Niinuma A, Ohashi M, Fukushi M, Oie M et al (2004) PDZ domain-binding motif of human T-cell leukemia virus type 1 tax oncoprotein augments the transforming activity in a rat fibroblast cell line. Virology 318(1):327–336

    Article  CAS  Google Scholar 

  135. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  CAS  PubMed  Google Scholar 

  136. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  CAS  PubMed  Google Scholar 

  137. Cai X, Schäfer A, Lu S, Bilello JP, Desrosiers RC, Edwards R et al (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2(3):e23

    Article  PubMed Central  PubMed  Google Scholar 

  138. Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J et al (2004) Identification of virus-encoded microRNAs. Science 304(5671):734–736

    Article  CAS  PubMed  Google Scholar 

  139. Choy EY, Siu KL, Kok KH, Lung RW, Tsang CM, To KF et al (2008) An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J Exp Med 205(11):2551–2560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Dölken L, Malterer G, Erhard F, Kothe S, Friedel CC, Suffert G et al (2010) Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe 7(4):324–334

    Article  PubMed  Google Scholar 

  141. Marquitz AR, Mathur A, Nam CS, Raab-Traub N (2011) The Epstein-Barr virus BART microRNAs target the pro-apoptotic protein Bim. Virology 412(2):392–400

    Article  CAS  PubMed  Google Scholar 

  142. Marquitz AR, Raab-Traub N (2012) The role of miRNAs and EBV BARTs in NPC. Semin Cancer Biol 22(2):166–172

    Article  CAS  PubMed  Google Scholar 

  143. Marquitz AR, Mathur A, Shair KH, Raab-Traub N (2012) Infection of Epstein-Barr virus in a gastric carcinoma cell line induces anchorage independence and global changes in gene expression. Proc Natl Acad Sci U S A 109(24):9593–9598

    Article  CAS  PubMed  Google Scholar 

  144. Blattner WA (1999) Human retroviruses: their role in cancer. Proc Assoc Am Physicians 111(6):563–572

    Article  CAS  PubMed  Google Scholar 

  145. Kim HH, van den Heuvel AP, Schmidt JW, Ross SR (2011) Novel common integration sites targeted by mouse mammary tumor virus insertion in mammary tumors have oncogenic activity. PLoS One 6(11):e27425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Sourvinos G, Tsatsanis C, Spandidos DA (2000) Mechanisms of retrovirus-induced oncogenesis. Folia Biol 46(6):226–232

    CAS  Google Scholar 

  147. Sung WK, Zheng H, Li S, Chen R, Liu X, Li Y et al (2012) Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 44(7):765–769

    Article  CAS  PubMed  Google Scholar 

  148. Boldogh I, Huang ES, Rady P, Arany I, Tyring S, Albrecht T (1994) Alteration in the coding potential and expression of H-ras in human cytomegalovirus-transformed cells. Intervirology 37(6):321–329

    Article  CAS  PubMed  Google Scholar 

  149. Geder KM, Lausch R, O’Neill F, Rapp F (1976) Oncogenic transformation of human embryo lung cells by human cytomegalovirus. Science 192(4244):1134–1137

    Article  CAS  PubMed  Google Scholar 

  150. Geder L, Kreider J, Rapp F (1977) Human cells transformed in vitro by human cytomegalovirus: tumorigenicity in athymic nude mice. J Natl Cancer Inst 58(4):1003–1009

    Article  CAS  PubMed  Google Scholar 

  151. Geder L, Laychock AM, Gorodecki J, Rapp F (1978) Alterations in biological properties of different lines of cytomegalovirus-transformed human embryo lung cells following in vitro cultivation. IARC Sci Publ 24 Pt 2:591–601

    Google Scholar 

  152. Cinatl J, Scholz M, Kotchetkov R, Vogel JU, Doerr HW (2004) Molecular mechanisms of the modulatory effects of HCMV infection in tumor cell biology. Trends Mol Med 10(1):19–23

    Article  CAS  PubMed  Google Scholar 

  153. Scheurer ME, Bondy ML, Aldape KD, Albrecht T, El-Zein R (2008) Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol 116(1):79–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Cobbs CS, Soroceanu L, Denham S, Zhang W, Kraus MH (2008) Modulation of oncogenic phenotype in human glioma cells by cytomegalovirus IE1-mediated mitogenicity. Cancer Res 68(3):724–730

    Article  CAS  PubMed  Google Scholar 

  155. Maussang D, Verzijl D, van Walsum M, Leurs R, Holl J, Pleskoff O et al (2006) Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci U S A 103(35):13068–13073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Chimal-Ramírez GK, Espinoza-Sánchez NA, Fuentes-Pananá EM (2013) Protumor activities of the immune response: insights in the mechanisms of immunological shift, oncotraining, and oncopromotion. J Oncol 2013:835956

    Article  PubMed Central  PubMed  Google Scholar 

  157. Elinav E, Nowarski R, Thaiss CA, Hu B, ** C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771

    Article  CAS  PubMed  Google Scholar 

  158. IARC Working Group (1994) Schistosomes, liver flukes and helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum 61:1–241. IARC working group on the evaluation of carcinogenic risks to humans. Lyon, 7–14 June 1994

    Google Scholar 

  159. Fuentes-Pananá E, Camorlinga-Ponce M, Maldonado-Bernal C (2009) Infection, inflammation and gastric cancer. Salud Publica Mex 51(5):427–433

    Article  PubMed  Google Scholar 

  160. Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of helicobacter pylori infection. Clin Microbiol Rev 19(3):449–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Xu J, Yin Z, Cao S, Gao W, Liu L, Yin Y et al (2013) Systematic review and meta-analysis on the association between IL-1B polymorphisms and cancer risk. PLoS One 8(5):e63654

    Article  PubMed Central  PubMed  Google Scholar 

  162. Xue H, Lin B, Ni P, Xu H, Huang G (2010) Interleukin-1B and interleukin-1 RN polymorphisms and gastric carcinoma risk: a meta-analysis. J Gastroenterol Hepatol 25(10):1604–1617

    Article  PubMed  Google Scholar 

  163. Crusius JB, Canzian F, Capellá G, Peña AS, Pera G, Sala N et al (2008) Cytokine gene polymorphisms and the risk of adenocarcinoma of the stomach in the European prospective investigation into cancer and nutrition (EPIC-EURGAST). Ann Oncol 19(11):1894–1902

    Article  CAS  PubMed  Google Scholar 

  164. Cheng D, Hao Y, Zhou W, Ma Y (2013) Positive association between Interleukin-8 -251A > T polymorphism and susceptibility to gastric carcinogenesis: a meta-analysis. Cancer Cell Int 13(1):100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Poli G (2000) Pathogenesis of liver fibrosis: role of oxidative stress. Mol Asp Med 21(3):49–98

    Article  CAS  Google Scholar 

  166. Cárdenas-Mondragón MG, Carreón-Talavera R, Camorlinga-Ponce M, Gomez-Delgado A, Torres J, Fuentes-Pananá EM (2013) Epstein Barr virus and Helicobacter pylori co-infection are positively associated with severe gastritis in pediatric patients. PLoS One 8(4):e62850

    Article  PubMed Central  PubMed  Google Scholar 

  167. Cárdenas-Mondragón MG, Flores-Luna L, Camorlinga-Ponce M, Gómez-Delgado A, Torres J, Fuentes-Pananá E (2014) Epstein barr virus reactivation is an important trigger of gastric inflammation and progression to intestinal type gastric cancer. In: Proceedings of the Epstein Barr virus 50th anniversary conference. Keble College, Oxford

    Google Scholar 

  168. Chadburn A, Abdul-Nabi AM, Teruya BS, Lo AA (2013) Lymphoid proliferations associated with human immunodeficiency virus infection. Arch Pathol Lab Med 137(3):360–370

    Article  CAS  PubMed  Google Scholar 

  169. Bernstein WB, Little RF, Wilson WH, Yarchoan R (2006) Acquired immunodeficiency syndrome-related malignancies in the era of highly active antiretroviral therapy. Int J Hematol 84(1):3–11

    Article  CAS  PubMed  Google Scholar 

  170. Young LS, Murray PG (2003) Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene 22(33):5108–5121

    Article  CAS  PubMed  Google Scholar 

  171. Young L, Alfieri C, Hennessy K, Evans H, O’Hara C, Anderson KC et al (1989) Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med 321(16):1080–1085

    Article  CAS  PubMed  Google Scholar 

  172. Nourse JP, Jones K, Gandhi MK (2011) Epstein-Barr virus-related post-transplant lymphoproliferative disorders: pathogenetic insights for targeted therapy. Am J Transplant 11(5):888–895

    Article  CAS  PubMed  Google Scholar 

  173. Gandhi MK, Wilkie GM, Dua U, Mollee PN, Grimmett K, Williams T et al (2007) Immunity, homing and efficacy of allogeneic adoptive immunotherapy for posttransplant lymphoproliferative disorders. Am J Transplant 7(5):1293–1299

    Article  CAS  PubMed  Google Scholar 

  174. Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P et al (2007) Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110(4):1123–1131

    Article  CAS  PubMed  Google Scholar 

  175. Vallat L, Benhamou Y, Gutierrez M, Ghillani P, Hercher C, Thibault V et al (2004) Clonal B cell populations in the blood and liver of patients with chronic hepatitis C virus infection. Arthritis Rheum 50(11):3668–3678

    Article  PubMed  Google Scholar 

  176. Quinn ER, Chan CH, Hadlock KG, Foung SK, Flint M, Levy S (2001) The B-cell receptor of a hepatitis C virus (HCV)-associated non-Hodgkin lymphoma binds the viral E2 envelope protein, implicating HCV in lymphomagenesis. Blood 98(13):3745–3749

    Article  CAS  PubMed  Google Scholar 

  177. Chan CH, Hadlock KG, Foung SK, Levy S (2001) V (H)1-69 gene is preferentially used by hepatitis C virus-associated B cell lymphomas and by normal B cells responding to the E2 viral antigen. Blood 97(4):1023–1026

    Article  CAS  PubMed  Google Scholar 

  178. Hermine O, Lefrère F, Bronowicki JP, Mariette X, Jondeau K, Eclache-Saudreau V et al (2002) Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med 347(2):89–94

    Article  CAS  PubMed  Google Scholar 

  179. Zullo A, Hassan C, Cristofari F, Andriani A, De Francesco V, Ierardi E et al (2010) Effects of Helicobacter pylori eradication on early stage gastric mucosa-associated lymphoid tissue lymphoma. Clin Gastroenterol Hepatol 8(2):105–110

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwei Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saw, P.E., Song, E. (2023). Systemic Onco-Spheres: Viruses in Cancer. In: Song, E. (eds) Tumor Ecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-99-1183-7_26

Download citation

Publish with us

Policies and ethics

Navigation