Cancer Stem Cells (CSCs) in Tumor Ecosystem

  • Chapter
  • First Online:
Tumor Ecosystem
  • 341 Accesses

Abstract

In cancer, cancer stem cells (CSCs) is a unique cell population that could acquire the stemness ability of a stem cell that enable them to proliferate and grow exponentially. When seen through the perspective of an ecosystem, many different components of the tumor interact with CSCs, in many different directions. These interactions support the complex changes not only in the local and distal onco-sphere, but also dictates the intra-onco-spherical communications, making both onco-spheres constantly changing to grow in the most suitable environment. According to many studies, different from parental tumor cells, CSCs differ in their gene expression, tumor proliferative capacity, immunological interactions, and responsiveness to treatment. In this chapter, we give an overview of the origin and history of CSCs and their reciprocal crosstalks in the local and distal onco-sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–9337

    Article  CAS  PubMed  Google Scholar 

  3. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    Article  CAS  PubMed  Google Scholar 

  4. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115

    Article  CAS  PubMed  Google Scholar 

  5. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    CAS  PubMed  Google Scholar 

  6. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM et al (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68(11):4311–4320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648

    Article  CAS  PubMed  Google Scholar 

  8. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  CAS  PubMed  Google Scholar 

  9. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  CAS  PubMed  Google Scholar 

  10. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708

    Article  CAS  PubMed  Google Scholar 

  11. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL (2008) CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98(4):756–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmidt F, Efferth T (2016) Tumor heterogeneity, single-cell sequencing, and drug resistance, vol 9, Pharmaceuticals, p 2

    Google Scholar 

  13. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  14. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    Article  CAS  PubMed  Google Scholar 

  15. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martelotto LG, Ng CK, Piscuoglio S, Weigelt B, Reis-Filho JS (2014) Breast cancer intra-tumor heterogeneity. Breast Cancer Res 16(3):210

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  CAS  PubMed  Google Scholar 

  18. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsai L-L, Yu C-C, Lo J-F, Sung W-W, Lee H, Chen S-L et al (2012) Enhanced cisplatin resistance in oral-cancer stem-like cells is correlated with upregulation of excision-repair cross-complementation group 1. J Dent Sci 7(2):111–117

    Article  Google Scholar 

  20. Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE et al (2011) A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol 195(3):417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamamoto Y, Yoshioka Y, Minoura K, Takahashi RU, Takeshita F, Taya T et al (2011) An integrative genomic analysis revealed the relevance of microRNA and gene expression for drug-resistance in human breast cancer cells. Mol Cancer 10:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dallas NA, **a L, Fan F, Gray MJ, Gaur P, van Buren G et al (2009) Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res 69(5):1951–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L et al (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A 106(38):16281–16286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sahlberg SH, Spiegelberg D, Glimelius B, Stenerlöw B, Nestor M (2014) Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells. PLoS One 9(4):e94621

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang L, Liu X, Ren Y, Zhang J, Chen J, Zhou W et al (2017) Cisplatin-enriching cancer stem cells confer multidrug resistance in non-small cell lung cancer via enhancing TRIB1/HDAC activity. Cell Death Dis 8(4):e2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carnero A, Garcia-Mayea Y, Mir C, Lorente J, Rubio IT, Me LL (2016) The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev 49:25–36

    Article  CAS  PubMed  Google Scholar 

  27. Carcereri de Prati A, Butturini E, Rigo A, Oppici E, Rossin M, Boriero D et al (2017) Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia. J Cell Biochem 118(10):3237–3248

    Article  CAS  PubMed  Google Scholar 

  28. Gilchrist KW, Gray R, Fowble B, Tormey DC, Taylor SGt. (1993) Tumor necrosis is a prognostic predictor for early recurrence and death in lymph node-positive breast cancer: a 10-year follow-up study of 728 Eastern Cooperative Oncology Group patients. J Clin Oncol 11(10):1929–1935

    Article  CAS  PubMed  Google Scholar 

  29. Siebzehnrubl FA, Silver DJ, Tugertimur B, Deleyrolle LP, Siebzehnrubl D, Sarkisian MR et al (2013) The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol Med 5(8):1196–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I et al (2016) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci U S A 113(14):E2047–E2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang H, Lu H, **ang L, Bullen JW, Zhang C, Samanta D et al (2015) HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci U S A 112(45):6215–6223

    Article  Google Scholar 

  32. Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S et al (2013) Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23(3):316–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T et al (2013) Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 9:712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peng F, Wang JH, Fan WJ, Meng YT, Li MM, Li TT et al (2018) Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 37(8):1062–1074

    Article  CAS  PubMed  Google Scholar 

  35. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI et al (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11(5):407–420

    Article  CAS  PubMed  Google Scholar 

  37. Kim H, Lin Q, Glazer PM, Yun Z (2018) The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells. Breast Cancer Res 20(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  38. Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN et al (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A 109(8):2784–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hasmim M, Noman MZ, Messai Y, Bordereaux D, Gros G, Baud V et al (2013) Cutting edge: hypoxia-induced nanog favors the intratumoral infiltration of regulatory T cells and macrophages via direct regulation of TGF-β1. J Immunol 191(12):5802–5806

    Article  CAS  PubMed  Google Scholar 

  40. Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ et al (1997) Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A 94(15):8104–8109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71(13):4640–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pietras A, Gisselsson D, Ora I, Noguera R, Beckman S, Navarro S et al (2008) High levels of HIF-2alpha highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche. J Pathol 214(4):482–488

    Article  CAS  PubMed  Google Scholar 

  43. Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J, Lathia JD et al (2011) Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18(5):829–840

    Article  CAS  PubMed  Google Scholar 

  44. Qiang L, Wu T, Zhang HW, Lu N, Hu R, Wang YJ et al (2012) HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating notch signaling pathway. Cell Death Differ 19(2):284–294

    Article  CAS  PubMed  Google Scholar 

  45. Man J, Yu X, Huang H, Zhou W, **ang C, Huang H et al (2018) Hypoxic induction of vasorin regulates notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell 22(1):104–118

    Article  CAS  PubMed  Google Scholar 

  46. Xu W, Zhou W, Cheng M, Wang J, Liu Z, He S et al (2017) Hypoxia activates Wnt/β-catenin signaling by regulating the expression of BCL9 in human hepatocellular carcinoma. Sci Rep 7:40446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE et al (2013) Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci 16(10):1373–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harrison H, Rogerson L, Gregson HJ, Brennan KR, Clarke RB, Landberg G (2013) Contrasting hypoxic effects on breast cancer stem cell hierarchy is dependent on ER-α status. Cancer Res 73(4):1420–1433

    Article  CAS  PubMed  Google Scholar 

  49. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142

    Article  CAS  PubMed  Google Scholar 

  50. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    Article  CAS  PubMed  Google Scholar 

  51. Peinado H, Portillo F, Cano A (2004) Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 48(5-6):365–375

    Article  CAS  PubMed  Google Scholar 

  52. Eun K, Ham SW, Kim H (2017) Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep 50(3):117–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hollier BG, Tinnirello AA, Werden SJ, Evans KW, Taube JH, Sarkar TR et al (2013) FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer. Cancer Res 73(6):1981–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dembinski JL, Krauss S (2009) Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis 26(7):611–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L et al (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4(8):e6816

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ma C, Ding YC, Yu W, Wang Q, Meng B, Huang T (2015) MicroRNA-200c overexpression plays an inhibitory role in human pancreatic cancer stem cells by regulating epithelial-mesenchymal transition. Minerva Med 106(4):193–202

    CAS  PubMed  Google Scholar 

  58. Song SJ, Ito K, Ala U, Kats L, Webster K, Sun SM et al (2013) The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 13(1):87–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C et al (2013) MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154(2):311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. De Carolis S, Bertoni S, Nati M, D'Anello L, Papi A, Tesei A et al (2016) Carbonic anhydrase 9 mRNA/microRNA34a interplay in hypoxic human mammospheres. J Cell Physiol 231(7):1534–1541

    Article  PubMed  Google Scholar 

  61. Papi A, De Carolis S, Bertoni S, Storci G, Sceberras V, Santini D et al (2014) PPARγ and RXR ligands disrupt the inflammatory cross-talk in the hypoxic breast cancer stem cells niche. J Cell Physiol 229(11):1595–1606

    Article  CAS  PubMed  Google Scholar 

  62. Taylor DD, Doellgast GJ (1979) Quantitation of peroxidase-antibody binding to membrane fragments using column chromatography. Anal Biochem 98(1):53–59

    Article  CAS  PubMed  Google Scholar 

  63. Bao B, Ali S, Ahmad A, Azmi AS, Li Y, Banerjee S et al (2012) Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS One 7(12):e50165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takahashi RU, Miyazaki H, Takeshita F, Yamamoto Y, Minoura K, Ono M et al (2015) Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1. Nat Commun 6:7318

    Article  CAS  PubMed  Google Scholar 

  65. Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW, Hambardzumyan D et al (2010) Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6(2):141–152

    Article  CAS  PubMed  Google Scholar 

  66. Lu J, Ye X, Fan F, **a L, Bhattacharya R, Bellister S et al (2013) Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 23(2):171–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu TS, Costello MA, Talsma CE, Flack CG, Crowley JG, Hamm LL et al (2011) Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res 71(18):6061–6072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848

    Article  CAS  PubMed  Google Scholar 

  69. Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L et al (2010) Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res 70(17):6945–6956

    Article  CAS  PubMed  Google Scholar 

  70. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F et al (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Su S, Chen J, Yao H, Liu J, Yu S, Lao L et al (2018) CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172(4):841–56 e16

    Article  CAS  PubMed  Google Scholar 

  72. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    Article  CAS  PubMed  Google Scholar 

  73. Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth–bystanders turning into key players. Curr Opin Genet Dev 19(1):67–73

    Article  PubMed  Google Scholar 

  74. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659

    Article  CAS  PubMed  Google Scholar 

  75. Mueller MM, Fusenig NE (2004) Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4(11):839–849

    Article  CAS  PubMed  Google Scholar 

  76. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348

    Article  CAS  PubMed  Google Scholar 

  77. Gabbiani G, Ryan GB, Majne G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27(5):549–550

    Article  CAS  PubMed  Google Scholar 

  78. Yu Y, **ao CH, Tan LD, Wang QS, Li XQ, Feng YM (2014) Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer 110(3):724–732

    Article  CAS  PubMed  Google Scholar 

  79. Han ME, Kim HJ, Shin DH, Hwang SH, Kang CD, Oh SO (2015) Overexpression of NRG1 promotes progression of gastric cancer by regulating the self-renewal of cancer stem cells. J Gastroenterol 50(6):645–656

    Article  CAS  PubMed  Google Scholar 

  80. Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko YH, Flomenberg N, Wang C et al (2011) Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther 12(10):924–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hu Y, Yan C, Mu L, Huang K, Li X, Tao D et al (2015) Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One 10(5):e0125625

    Article  PubMed  PubMed Central  Google Scholar 

  82. Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T et al (2014) Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159(3):499–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG et al (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178

    Article  CAS  PubMed Central  Google Scholar 

  84. Tang DG (2012) Understanding cancer stem cell heterogeneity and plasticity. Cell Res 22(3):457–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Loeffler M, Krüger JA, Niethammer AG, Reisfeld RA (2006) Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest 116(7):1955–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rafii A, Mirshahi P, Poupot M, Faussat AM, Simon A, Ducros E et al (2008) Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian tumours. PLoS One 3(12):e3894

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14(10):611–629

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612

    Article  CAS  PubMed  Google Scholar 

  89. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266

    Article  CAS  PubMed  Google Scholar 

  90. Bonde AK, Tischler V, Kumar S, Soltermann A, Schwendener RA (2012) Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer 12:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Korkaya H, Kim GI, Davis A, Malik F, Henry NL, Ithimakin S et al (2012) Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 47(4):570–584

    Article  CAS  PubMed Central  Google Scholar 

  92. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82

    Article  CAS  PubMed  Google Scholar 

  93. Krishnamurthy S, Dong Z, Vodopyanov D, Imai A, Helman JI, Prince ME et al (2010) Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res 70(23):9969–9978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Frank NY, Schatton T, Frank MH (2010) The therapeutic promise of the cancer stem cell concept. J Clin Invest 120(1):41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang Z, Dong Z, Lauxen IS, Filho MS, Nör JE (2014) Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res 74(10):2869–2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101(4):937–949

    Article  CAS  PubMed  Google Scholar 

  97. Wong GS, Rustgi AK (2013) Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis. Br J Cancer 108(4):755–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Murai T (2015) Lipid raft-mediated regulation of hyaluronan-CD44 interactions in inflammation and cancer. Front Immunol 6:420

    Article  PubMed  PubMed Central  Google Scholar 

  99. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17(7):867–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwei Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saw, P.E., Song, E. (2023). Cancer Stem Cells (CSCs) in Tumor Ecosystem. In: Song, E. (eds) Tumor Ecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-99-1183-7_17

Download citation

Publish with us

Policies and ethics

Navigation