Distal Onco-sphere: Organotrophic Metastasis

  • Chapter
  • First Online:
Tumor Ecosystem
  • 329 Accesses

Abstract

In order for CTCs to find a suitable soil for its growth, CTCs need to assess the distal onco-sphere for suitability in terms of secreted factors, inflammation, and metabolic changes in the new environment. In this chapter, we discuss on the interesting fact that the tumor cells secrete various factors to create a different distal onco-sphere, leading to predisposition of CTCs to metastasize specifically towards certain organs. We also discuss how to host builds in its protective defense mechanism to counter these organotrophic metastasis events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284

    Article  CAS  PubMed  Google Scholar 

  2. Chen W, Hoffmann AD, Liu H, Liu X (2018) Organotropism: new insights into molecular mechanisms of breast cancer metastasis. NPJ Precis Oncol 2(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wu Q, Li J, Zhu S, Wu J, Chen C, Liu Q et al (2017) Breast cancer subtypes predict the preferential site of distant metastases: a SEER based study. Oncotarget 8(17):27990–27996

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XH (2019) Metastasis organotropism: redefining the congenial soil. Dev Cell 49(3):375–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6(1):100–102

    Article  CAS  PubMed  Google Scholar 

  6. Fidler IJ (1970) Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-Iodo-2′-deoxyuridine23. JNCI 45(4):773–782

    CAS  PubMed  Google Scholar 

  7. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153(3):865–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M et al (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115(1):44–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S et al (2010) Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci U S A 107(43):18545–18550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467(7319):1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jacob LS, Vanharanta S, Obenauf AC, Pirun M, Viale A, Socci ND et al (2015) Metastatic competence can emerge with selection of preexisting oncogenic alleles without a need of new mutations. Cancer Res 75(18):3713–3719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459(7249):1005–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549

    Article  CAS  PubMed  Google Scholar 

  14. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nguyen DX, Massagué J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8(5):341–352

    Article  CAS  PubMed  Google Scholar 

  16. Loo JM, Scherl A, Nguyen A, Man FY, Weinberg E, Zeng Z et al (2015) Extracellular metabolic energetics can promote cancer progression. Cell 160(3):393–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z et al (2015) Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527(7577):186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tabariès S, Dupuy F, Dong Z, Monast A, Annis MG, Spicer J et al (2012) Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes. Mol Cell Biol 32(15):2979–2991

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wan J, Wen D, Dong L, Tang J, Liu D, Liu Y et al (2015) Establishment of monoclonal HCC cell lines with organ site-specific tropisms. BMC Cancer 15:678

    Article  PubMed  PubMed Central  Google Scholar 

  20. Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21(2):139–146

    Article  CAS  PubMed  Google Scholar 

  21. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deng J, Liu Y, Lee H, Herrmann A, Zhang W, Zhang C et al (2012) S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 21(5):642–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8(12):1369–1375

    Article  CAS  PubMed  Google Scholar 

  25. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K et al (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10(11):1349–1355

    Article  CAS  PubMed  Google Scholar 

  26. Webber J, Steadman R, Mason MD, Tabi Z, Clayton A (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70(23):9621–9630

    Article  CAS  PubMed  Google Scholar 

  27. Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR et al (2001) Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 98(10):3143–3149

    Article  CAS  PubMed  Google Scholar 

  28. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J et al (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113(5):752–760

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, **ang X, Zhuang X, Zhang S, Liu C, Cheng Z et al (2010) Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol 176(5):2490–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. **ang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J et al (2009) Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 124(11):2621–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A et al (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66(18):9290–9298

    Article  CAS  PubMed  Google Scholar 

  33. Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC et al (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71(15):5346–5356

    Article  CAS  PubMed  Google Scholar 

  34. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  35. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    Article  CAS  PubMed  Google Scholar 

  36. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37

    Article  PubMed  Google Scholar 

  37. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sceneay J, Chow MT, Chen A, Halse HM, Wong CS, Andrews DM et al (2012) Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res 72(16):3906–3911

    Article  CAS  PubMed  Google Scholar 

  39. Finger EC, Giaccia AJ (2010) Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 29(2):285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cox TR, Rumney RMH, Schoof EM, Perryman L, Høye AM, Agrawal A et al (2015) The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522(7554):106–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taranova AG, Maldonado D, Vachon CM, Jacobsen EA, Abdala-Valencia H, McGarry MP et al (2008) Allergic pulmonary inflammation promotes the recruitment of circulating tumor cells to the lung. Cancer Res 68(20):8582–8589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yan L, Cai Q, Xu Y (2013) The ubiquitin-CXCR4 axis plays an important role in acute lung infection-enhanced lung tumor metastasis. Clin Cancer Res 19(17):4706–4716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roy LD, Ghosh S, Pathangey LB, Tinder TL, Gruber HE, Mukherjee P (2011) Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer. BMC Cancer 11:365

    Article  PubMed  PubMed Central  Google Scholar 

  44. Esposito M, Kang Y (2014) Targeting tumor-stromal interactions in bone metastasis. Pharmacol Ther 141(2):222–233

    Article  CAS  PubMed  Google Scholar 

  45. Ren G, Esposito M, Kang Y (2015) Bone metastasis and the metastatic niche. J Mol Med 93(11):1203–1212

    Article  CAS  PubMed  Google Scholar 

  46. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501

    Article  CAS  PubMed  Google Scholar 

  47. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121(4):1298–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L et al (2015) The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27(2):193–210

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19(2):192–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stayrook KR, Mack JK, Cerabona D, Edwards DF, Bui HH, Niewolna M et al (2015) TGFβ-Mediated induction of SphK1 as a potential determinant in human MDA-MB-231 breast cancer cell bone metastasis. BoneKEy Rep 4:719

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R et al (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103(2):197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Korpal M, Kang Y (2008) The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol 5(3):115–119

    Article  CAS  PubMed  Google Scholar 

  53. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y et al (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457(7225):102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schelter F, Grandl M, Seubert B, Schaten S, Hauser S, Gerg M et al (2011) Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10. Clin Exp Metastasis 28(8):793–802

    Article  CAS  PubMed  Google Scholar 

  55. Smith HA, Kang Y (2017) Determinants of organotropic metastasis. Ann Rev Cancer Biol 1(1):403–423

    Article  Google Scholar 

  56. Pani G, Galeotti T, Chiarugi P (2010) Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev 29(2):351–378

    Article  CAS  PubMed  Google Scholar 

  57. Rodriguez-Torres M, Allan AL (2016) Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin Exp Metastasis 33(1):97–113

    Article  CAS  PubMed  Google Scholar 

  58. Chen MH, Weng JJ, Cheng CT, Wu RC, Huang SC, Wu CE et al (2016) ALDH1A3, the major aldehyde dehydrogenase isoform in human cholangiocarcinoma cells, affects prognosis and gemcitabine resistance in cholangiocarcinoma patients. Clin Cancer Res 22(16):4225–4235

    Article  CAS  PubMed  Google Scholar 

  59. LeBleu VS, O'Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC et al (2014) PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16(10):992–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liang J, Shao SH, Xu Z-X, Hennessy B, Ding Z, Larrea M et al (2007) The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9(2):218–224

    Article  CAS  PubMed  Google Scholar 

  61. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17(11):1498–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weber GF (2016) Metabolism in cancer metastasis. Int J Cancer 138(9):2061–2066

    Article  CAS  PubMed  Google Scholar 

  63. Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR, Kralli A et al (2007) Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67(4):1472–1486

    Article  CAS  PubMed  Google Scholar 

  64. Sansone P, Ceccarelli C, Berishaj M, Chang Q, Rajasekhar VK, Perna F et al (2016) Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nat Commun 7:10442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20

    Article  CAS  PubMed  Google Scholar 

  66. Dupuy F, Tabariès S, Andrzejewski S, Dong Z, Blagih J, Annis Matthew G et al (2015) PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab 22(4):577–589

    Article  CAS  PubMed  Google Scholar 

  67. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Article  CAS  PubMed  Google Scholar 

  68. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252

    Article  CAS  PubMed  Google Scholar 

  69. Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11(6):411–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ell B, Kang Y (2012) SnapShot: bone metastasis. Cell 151(3):690

    Article  CAS  PubMed  Google Scholar 

  71. Logothetis CJ, Lin S-H (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5(1):21–28

    Article  CAS  PubMed  Google Scholar 

  72. Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS et al (2006) Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 12(20 Pt 2):6213s–6216s

    Article  CAS  PubMed  Google Scholar 

  73. Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M et al (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20(6):701–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M et al (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16(1):67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Monteiro AC, Leal AC, Gonçalves-Silva T, Mercadante AC, Kestelman F, Chaves SB et al (2013) T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS One 8(7):e68171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Karavitis J, Hix LM, Shi YH, Schultz RF, Khazaie K, Zhang M (2012) Regulation of COX2 expression in mouse mammary tumor cells controls bone metastasis and PGE2-induction of regulatory T cell migration. PLoS One 7(9):e46342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sawant A, Hensel JA, Chanda D, Harris BA, Siegal GP, Maheshwari A et al (2012) Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells. J Immunol 189(9):4258–4265

    Article  CAS  PubMed  Google Scholar 

  78. Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S et al (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7(1):94–100

    Article  CAS  PubMed  Google Scholar 

  79. Cohen-Solal JF, Cassard L, Fournier EM, Loncar SM, Fridman WH, Sautès-Fridman C (2010) Metastatic melanomas express inhibitory low affinity fc gamma receptor and escape humoral immunity. Dermatol Res Pract 2010:657406

    Article  PubMed  PubMed Central  Google Scholar 

  80. Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Céspedes MV et al (2012) Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22(5):571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhao L, Lim SY, Gordon-Weeks AN, Tapmeier TT, Im JH, Cao Y et al (2013) Recruitment of a myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology 57(2):829–839

    Article  CAS  PubMed  Google Scholar 

  83. Spicer JD, McDonald B, Cools-Lartigue JJ, Chow SC, Giannias B, Kubes P et al (2012) Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res 72(16):3919–3927

    Article  CAS  PubMed  Google Scholar 

  84. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B et al (2013) Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 123(8):3446–3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R (2011) Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20(3):300–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13(10):739–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yan HH, Pickup M, Pang Y, Gorska AE, Li Z, Chytil A et al (2010) Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res 70(15):6139–6149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gil-Bernabé AM, Ferjancic S, Tlalka M, Zhao L, Allen PD, Im JH et al (2012) Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119(13):3164–3175

    Article  PubMed  Google Scholar 

  89. van Deventer HW, Palmieri DA, Wu QP, McCook EC, Serody JS (2013) Circulating fibrocytes prepare the lung for cancer metastasis by recruiting Ly-6C+ monocytes via CCL2. J Immunol 190(9):4861–4867

    Article  PubMed  Google Scholar 

  90. Toh B, Wang X, Keeble J, Sim WJ, Khoo K, Wong WC et al (2011) Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol 9(9):e1001162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193(6):727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kinoshita T, Ishii G, Hiraoka N, Hirayama S, Yamauchi C, Aokage K et al (2013) Forkhead box P3 regulatory T cells coexisting with cancer associated fibroblasts are correlated with a poor outcome in lung adenocarcinoma. Cancer Sci 104(4):409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Olkhanud PB, Baatar D, Bodogai M, Hakim F, Gress R, Anderson RL et al (2009) Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res 69(14):5996–6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dalotto-Moreno T, Croci DO, Cerliani JP, Martinez-Allo VC, Dergan-Dylon S, Méndez-Huergo SP et al (2013) Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res 73(3):1107–1117

    Article  CAS  PubMed  Google Scholar 

  95. Kitamura T, Qian B-Z, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15(2):73–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chopra M, Riedel SS, Biehl M, Krieger S, von Krosigk V, Bäuerlein CA et al (2013) Tumor necrosis factor receptor 2-dependent homeostasis of regulatory T cells as a player in TNF-induced experimental metastasis. Carcinogenesis 34(6):1296–1303

    Article  CAS  PubMed  Google Scholar 

  97. Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y (2006) CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176(3):1582–1587

    Article  CAS  PubMed  Google Scholar 

  98. Wculek SK, Malanchi I (2015) Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528(7582):413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR (2004) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104(2):397–401

    Article  CAS  PubMed  Google Scholar 

  100. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20(5):576–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Labelle M, Begum S, Hynes RO (2014) Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 111(30):E3053–E3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW et al (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105(1):178–185

    Article  CAS  PubMed  Google Scholar 

  103. Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF et al (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89

    Article  PubMed  Google Scholar 

  104. Valiente M, Obenauf AC, ** X, Chen Q, Zhang XH, Lee DJ et al (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156(5):1002–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC et al (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527(7576):100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sevenich L, Bowman RL, Mason SD, Quail DF, Rapaport F, Elie BT et al (2014) Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat Cell Biol 16(9):876–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. **ng F, Kobayashi A, Okuda H, Watabe M, Pai SK, Pandey PR et al (2013) Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol Med 5(3):384–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kim SW, Choi HJ, Lee HJ, He J, Wu Q, Langley RR et al (2014) Role of the endothelin axis in astrocyte-and endothelial cell-mediated chemoprotection of cancer cells. Neuro-Oncology 16(12):1585–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Denève E, Riethdorf S, Ramos J, Nocca D, Coffy A, Daurès JP et al (2013) Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin Chem 59(9):1384–1392

    Article  PubMed  Google Scholar 

  111. Budczies J, von Winterfeld M, Klauschen F, Bockmayr M, Lennerz JK, Denkert C et al (2015) The landscape of metastatic progression patterns across major human cancers. Oncotarget 6(1):570–583

    Article  PubMed  Google Scholar 

  112. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100(2):158–173

    Article  CAS  PubMed  Google Scholar 

  113. Huang RL, Teo Z, Chong HC, Zhu P, Tan MJ, Tan CK et al (2011) ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood 118(14):3990–4002

    Article  CAS  PubMed  Google Scholar 

  114. Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR et al (2008) TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133(1):66–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tichet M, Prod'Homme V, Fenouille N, Ambrosetti D, Mallavialle A, Cerezo M et al (2015) Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis. Nat Commun 6:6993

    Article  CAS  PubMed  Google Scholar 

  116. Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446(7137):765–770

    Article  CAS  PubMed  Google Scholar 

  117. Rostami R, Mittal S, Rostami P, Tavassoli F, Jabbari B (2016) Brain metastasis in breast cancer: a comprehensive literature review. J Neuro-Oncol 127(3):407–414

    Article  CAS  Google Scholar 

  118. Sevenich L, Joyce JA (2014) Pericellular proteolysis in cancer. Genes Dev 28(21):2331–2347

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR et al (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25(4):501–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Momeny M, Saunus JM, Marturana F, McCart Reed AE, Black D, Sala G et al (2015) Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget 6(6):3932–3946

    Article  PubMed  PubMed Central  Google Scholar 

  121. Barthel SR, Hays DL, Yazawa EM, Opperman M, Walley KC, Nimrichter L et al (2013) Definition of molecular determinants of prostate cancer cell bone extravasation. Cancer Res 73(2):942–952

    Article  CAS  PubMed  Google Scholar 

  122. Auguste P, Fallavollita L, Wang N, Burnier J, Bikfalvi A, Brodt P (2007) The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol 170(5):1781–1792

    Article  PubMed  PubMed Central  Google Scholar 

  123. Eichbaum C, Meyer AS, Wang N, Bischofs E, Steinborn A, Bruckner T et al (2011) Breast cancer cell-derived cytokines, macrophages and cell adhesion: implications for metastasis. Anticancer Res 31(10):3219–3227

    CAS  PubMed  Google Scholar 

  124. Qi J, Chen N, Wang J, Siu CH (2005) Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Mol Biol Cell 16(9):4386–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rahn JJ, Chow JW, Horne GJ, Mah BK, Emerman JT, Hoffman P et al (2005) MUC1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin Exp Metastasis 22(6):475–483

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwei Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saw, P.E., Song, E. (2023). Distal Onco-sphere: Organotrophic Metastasis. In: Song, E. (eds) Tumor Ecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-99-1183-7_16

Download citation

Publish with us

Policies and ethics

Navigation