Distal Onco-Sphere: The Origin and Overview of Cancer Metastasis

  • Chapter
  • First Online:
Tumor Ecosystem
  • 345 Accesses

Abstract

In current cancer statistics, most cancer patients died of metastasis and not of primary tumors. Therefore, metastasis could be categorized as a complex and deadly event when occurred in cancer patients. During metastasis, cancer cells spread through growing into nearby normal tissue, moving through lymph nodes or blood vessels, traveling through bloodstream to other parts of the body and forming new tumors in other parts of the body. In this chapter, we will introduce the origin and overview of the mechanistic theory in cancer metastasis. We will also summarize the various theories associated with the development of metastasis. We are dedicating the next few chapters to understand the underlying mechanism and crosstalks between the local and the distal onco-sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liotta LA (1986) Tumor invasion and metastases—role of the extracellular matrix: rhoads memorial award lecture. Cancer Res 46(1):1–7

    CAS  PubMed  Google Scholar 

  2. Fisher ER, Fisher B (1967) Recent observations on concepts of metastasis. Arch Pathol 83(4):321–324

    CAS  PubMed  Google Scholar 

  3. Fisher B, Fisher ER (1966) The interrelationship of hematogenous and lymphatic tumor cell dissemination. Surg Gynecol Obstet 122(4):791–798

    CAS  PubMed  Google Scholar 

  4. Folkman J (1986) How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes memorial award lecture. Cancer Res 46(2):467–473

    CAS  PubMed  Google Scholar 

  5. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  CAS  PubMed  Google Scholar 

  6. Nicolson GL (1988) Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta 948(2):175–224

    CAS  PubMed  Google Scholar 

  7. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY et al (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463(7279):318–325

    Article  CAS  PubMed  Google Scholar 

  8. Tarin D (2011) Cell and tissue interactions in carcinogenesis and metastasis and their clinical significance. Semin Cancer Biol 21(2):72–82

    Article  CAS  PubMed  Google Scholar 

  9. Hart IR (2009) New evidence for tumour embolism as a mode of metastasis. J Pathol 219(3):275–276

    Article  PubMed  Google Scholar 

  10. Garber K (2008) Epithelial-to-mesenchymal transition is important to metastasis, but questions remain. J Natl Cancer Inst 100(4):232–233, 9

    Article  PubMed  Google Scholar 

  11. Bacac M, Stamenkovic I (2008) Metastatic cancer cell. Annu Rev Pathol 3:221–247

    Article  CAS  PubMed  Google Scholar 

  12. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564

    Article  CAS  PubMed  Google Scholar 

  13. Seyfried T (2012) Cancer as a metabolic disease: on the origin, management, and prevention of cancer. Wiley, Hoboken, NJ, p 432

    Book  Google Scholar 

  14. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  CAS  PubMed  Google Scholar 

  15. Weinberg R (2007) The biology of cancer. Taylor & Francis Group, New York, NY, p 796

    Google Scholar 

  16. Huysentruyt LC, Seyfried TN (2010) Perspectives on the mesenchymal origin of metastatic cancer. Cancer Metastasis Rev 29(4):695–707

    Article  PubMed  PubMed Central  Google Scholar 

  17. Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15(11):599–607

    Article  CAS  PubMed  Google Scholar 

  18. Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S et al (2011) Fusion between intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res 71(4):1497–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lazebnik Y (2010) What are the hallmarks of cancer? Nat Rev Cancer 10(4):232–233

    Article  CAS  PubMed  Google Scholar 

  20. Larue L, Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24(50):7443–7454

    Article  CAS  PubMed  Google Scholar 

  21. Trosko JE (2009) Review paper: cancer stem cells and cancer nonstem cells: from adult stem cells or from reprogramming of differentiated somatic cells. Vet Pathol 46(2):176–193

    Article  CAS  PubMed  Google Scholar 

  22. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  CAS  PubMed  Google Scholar 

  23. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5):822–829

    Article  CAS  PubMed  Google Scholar 

  24. Seyfried TN (2001) Perspectives on brain tumor formation involving macrophages, glia, and neural stem cells. Perspect Biol Med 44(2):263–282

    Article  CAS  PubMed  Google Scholar 

  25. Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119(6):1417–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  27. Pawelek JM (2008) Cancer-cell fusion with migratory bone-marrow-derived cells as an explanation for metastasis: new therapeutic paradigms. Future Oncol 4(4):449–452

    Article  PubMed  Google Scholar 

  28. Pawelek JM (2000) Tumour cell hybridization and metastasis revisited. Melanoma Res 10(6):507–514

    Article  CAS  PubMed  Google Scholar 

  29. Munzarová M, Kovarík J (1987) Is cancer a macrophage-mediated autoaggressive disease? Lancet 1(8539):952–954

    Article  PubMed  Google Scholar 

  30. Vignery A (2005) Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol 15(4):188–193

    Article  CAS  PubMed  Google Scholar 

  31. Chakraborty AK, de Freitas SJ, Espreafico EM, Pawelek JM (2001) Human monocyte x mouse melanoma fusion hybrids express human gene. Gene 275(1):103–106

    Article  CAS  PubMed  Google Scholar 

  32. Van den Bossche J, Bogaert P, van Hengel J, Guérin CJ, Berx G, Movahedi K et al (2009) Alternatively activated macrophages engage in homotypic and heterotypic interactions through IL-4 and polyamine-induced E-cadherin/catenin complexes. Blood 114(21):4664–4674

    Article  PubMed  Google Scholar 

  33. Pawelek JM (2005) Tumour-cell fusion as a source of myeloid traits in cancer. Lancet Oncol 6(12):988–993

    Article  CAS  PubMed  Google Scholar 

  34. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Article  CAS  PubMed  Google Scholar 

  36. Peinado H, Rafii S, Lyden D (2008) Inflammation joins the “niche”. Cancer Cell 14(5):347–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612

    Article  CAS  PubMed  Google Scholar 

  38. Pollard JW (2008) Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 84(3):623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Talmadge JE, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26(3–4):373–400

    Article  PubMed  Google Scholar 

  40. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196(3):254–265

    Article  CAS  PubMed  Google Scholar 

  41. Huysentruyt LC, Akgoc Z, Seyfried TN (2011) Hypothesis: are neoplastic macrophages/microglia present in glioblastoma multiforme? ASN Neuro 3(4):e00064

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maniecki MB, Etzerodt A, Ulhøi BP, Steiniche T, Borre M, Dyrskjøt L et al (2012) Tumor-promoting macrophages induce the expression of the macrophage-specific receptor CD163 in malignant cells. Int J Cancer 131(10):2320–2331

    Article  CAS  PubMed  Google Scholar 

  43. Seyfried TN, Shelton LM, Mukherjee P (2010) Does the existing standard of care increase glioblastoma energy metabolism? Lancet Oncol 11(9):811–813

    Article  PubMed  Google Scholar 

  44. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90

    Article  CAS  PubMed  Google Scholar 

  45. Seyfried TN, Huysentruyt LC (2013) On the origin of cancer metastasis. Crit Rev Oncog 18(1–2):43–73

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hunter KW, Crawford NP, Alsarraj J (2008) Mechanisms of metastasis. Breast Cancer Res 10(Suppl 1):S2

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    Article  CAS  PubMed  Google Scholar 

  48. Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197(4306):893–895

    Article  CAS  PubMed  Google Scholar 

  49. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549

    Article  CAS  PubMed  Google Scholar 

  50. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M et al (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115(1):44–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kauffman EC, Robinson VL, Stadler WM, Sokoloff MH, Rinker-Schaeffer CW (2003) Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. J Urol 169(3):1122–1133

    Article  PubMed  Google Scholar 

  53. Steeg PS (2003) Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 3(1):55–63

    Article  CAS  PubMed  Google Scholar 

  54. Wick W, Petersen I, Schmutzler RK, Wolfarth B, Lenartz D, Bierhoff E et al (1996) Evidence for a novel tumor suppressor gene on chromosome 15 associated with progression to a metastatic stage in breast cancer. Oncogene 12(5):973–978

    CAS  PubMed  Google Scholar 

  55. Sekita N, Suzuki H, Ichikawa T, Kito H, Akakura K, Igarashi T et al (2001) Epigenetic regulation of the KAI1 metastasis suppressor gene in human prostate cancer cell lines. Jpn J Cancer Res 92(9):947–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chambers AF, Harris JF, Ling V, Hill RP (1984) Rapid phenotype variation in cells derived from lung metastases of KHT fibrosarcoma. Invasion Metastasis 4(4):225–237

    CAS  PubMed  Google Scholar 

  57. Harris JF, Chambers AF, Hill RP, Ling V (1982) Metastatic variants are generated spontaneously at a high rate in mouse KHT tumor. Proc Natl Acad Sci U S A 79(18):5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weiss L (1990) Metastatic inefficiency. Adv Cancer Res 54:159–211

    Article  CAS  PubMed  Google Scholar 

  59. Trainer DL, Kline T, Hensler G, Greig R, Poste G (1988) Clonal analysis of the malignant properties of B16 melanoma cells treated with the DNA hypomethylating agent 5-azacytidine. Clin Exp Metastasis 6(3):185–200

    Article  CAS  PubMed  Google Scholar 

  60. Ishikawa M, Okada F, Hamada J, Hosokawa M, Kobayashi H (1987) Changes in the tumorigenic and metastatic properties of tumor cells treated with quercetin or 5-azacytidine. Int J Cancer 39(3):338–342

    Article  CAS  PubMed  Google Scholar 

  61. Kerbel RS, Frost P, Liteplo R, Carlow DA, Elliott BE (1984) Possible epigenetic mechanisms of tumor progression: induction of high-frequency heritable but phenotypically unstable changes in the tumorigenic and metastatic properties of tumor cell populations by 5-azacytidine treatment. J Cell Physiol Suppl 3:87–97

    Article  CAS  PubMed  Google Scholar 

  62. Olsson L, Forchhammer J (1984) Induction of the metastatic phenotype in a mouse tumor model by 5-azacytidine, and characterization of an antigen associated with metastatic activity. Proc Natl Acad Sci U S A 81(11):3389–3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stopper H, Pechan R, Schiffmann D (1992) 5-azacytidine induces micronuclei in and morphological transformation of Syrian hamster embryo fibroblasts in the absence of unscheduled DNA synthesis. Mutat Res 283(1):21–28

    Article  CAS  PubMed  Google Scholar 

  64. Frost P, Kerbel RS, Hunt B, Man S, Pathak S (1987) Selection of metastatic variants with identifiable karyotypic changes from a nonmetastatic murine tumor after treatment with 2′-deoxy-5-azacytidine or hydroxyurea: implications for the mechanisms of tumor progression. Cancer Res 47(10):2690–2695

    CAS  PubMed  Google Scholar 

  65. Ried T, Heselmeyer-Haddad K, Blegen H, Schröck E, Auer G (1999) Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors: a phenotype/genotype correlation. Genes Chromosom Cancer 25(3):195–204

    Article  CAS  PubMed  Google Scholar 

  66. Nakayama T, Taback B, Turner R, Morton DL, Hoon DS (2001) Molecular clonality of in-transit melanoma metastasis. Am J Pathol 158(4):1371–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chambers AF, Wilson S (1988) Use of NeoR B16F1 murine melanoma cells to assess clonality of experimental metastases in the immune-deficient chick embryo. Clin Exp Metastasis 6(2):171–182

    Article  CAS  PubMed  Google Scholar 

  68. Cheung ST, Chen X, Guan XY, Wong SY, Tai LS, Ng IO et al (2002) Identify metastasis-associated genes in hepatocellular carcinoma through clonality delineation for multinodular tumor. Cancer Res 62(16):4711–4721

    CAS  PubMed  Google Scholar 

  69. Fidler IJ, Yano S, Zhang RD, Fujimaki T, Bucana CD (2002) The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol 3(1):53–57

    Article  CAS  PubMed  Google Scholar 

  70. Talmadge JE, Wolman SR, Fidler IJ (1982) Evidence for the clonal origin of spontaneous metastases. Science 217(4557):361–363

    Article  CAS  PubMed  Google Scholar 

  71. Fidler IJ, Talmadge JE (1986) Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell. Cancer Res 46(10):5167–5171

    CAS  PubMed  Google Scholar 

  72. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

    Article  CAS  PubMed  Google Scholar 

  73. Pawelek J, Chakraborty A, Lazova R, Yilmaz Y, Cooper D, Brash D et al (2006) Co-opting macrophage traits in cancer progression: a consequence of tumor cell fusion? Contrib Microbiol 13:138–155

    Article  PubMed  Google Scholar 

  74. Rachkovsky M, Sodi S, Chakraborty A, Avissar Y, Bolognia J, McNiff JM et al (1998) Melanoma x macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis 16(4):299–312

    Article  CAS  PubMed  Google Scholar 

  75. Miller FR, Mohamed AN, McEachern D (1989) Production of a more aggressive tumor cell variant by spontaneous fusion of two mouse tumor subpopulations. Cancer Res 49(15):4316–4321

    CAS  PubMed  Google Scholar 

  76. De Baetselier P, Roos E, Brys L, Remels L, Feldman M (1984) Generation of invasive and metastatic variants of a non-metastatic T-cell lymphoma by in vivo fusion with normal host cells. Int J Cancer 34(5):731–738

    Article  PubMed  Google Scholar 

  77. Loustalot P, Algire GH, Legallais FY, Anderson BF (1952) Growth and histopathology of melanotic and amelanotic derivatives of the Cloudman melanoma S91. J Natl Cancer Inst 12(5):1079–1117

    CAS  PubMed  Google Scholar 

  78. Bendich A, Wilczok T, Borenfreund E (1965) Circulating DNA as a possible factor in oncogenesis. Science 148(3668):374–376

    Article  CAS  PubMed  Google Scholar 

  79. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37(3):646–650

    CAS  PubMed  Google Scholar 

  80. Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz AL et al (2001) Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci U S A 98(11):6407–6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. García-Olmo DC, Ruiz-Piqueras R, García-Olmo D (2004) Circulating nucleic acids in plasma and serum (CNAPS) and its relation to stem cells and cancer metastasis: state of the issue. Histol Histopathol 19(2):575–583

    PubMed  Google Scholar 

  82. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133(3421):571–573

    Article  Google Scholar 

  83. Kramer SA, Farnham R, Glenn JF, Paulson DF (1981) Comparative morphology of primary and secondary deposits of prostatic adenocarcinoma. Cancer 48(2):271–273

    Article  CAS  PubMed  Google Scholar 

  84. Johnson DE, Appelt G, Samuels ML, Luna M (1976) Metastases from testicular carcinoma. Study of 78 autopsied cases. Urology 8(3):234–239

    Article  CAS  PubMed  Google Scholar 

  85. O’Donnell McGee J (1992) Tumor metastasis. In: O’Donnell McGee J, Isaacson P, Wright N (eds) Oxford textbook of pathology. Oxford University, Oxford, pp 607–633

    Google Scholar 

  86. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Article  Google Scholar 

  87. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33(1):49–54

    Article  CAS  PubMed  Google Scholar 

  88. Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418(6900):823

    Article  CAS  PubMed  Google Scholar 

  89. Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, Buetow KH et al (1998) Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77(4):640–644

    Article  CAS  PubMed  Google Scholar 

  90. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V et al (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422(6929):297–302

    Article  CAS  PubMed  Google Scholar 

  91. Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T et al (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’. Nat Genet 37(3):225–232

    Article  CAS  PubMed  Google Scholar 

  92. Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J et al (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37(3):233–242

    Article  CAS  PubMed  Google Scholar 

  93. Yang H, Crawford N, Lukes L, Finney R, Lancaster M, Hunter KW (2005) Metastasis predictive signature profiles pre-exist in normal tissues. Clin Exp Metastasis 22(7):593–603

    Article  CAS  PubMed  Google Scholar 

  94. Kaur A, Webster MR, Marchbank K, Behera R, Ndoye A, Kugel CH 3rd et al (2016) sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532(7598):250–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Marsh T, Wong I, Sceneay J, Barakat A, Qin Y, Sjödin A et al (2016) Hematopoietic age at onset of triple-negative breast cancer dictates disease aggressiveness and progression. Cancer Res 76(10):2932–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4(8):579–591

    Article  CAS  PubMed  Google Scholar 

  97. Ewertz M, Jensen MB, Gunnarsdóttir K, Højris I, Jakobsen EH, Nielsen D et al (2011) Effect of obesity on prognosis after early-stage breast cancer. J Clin Oncol 29(1):25–31

    Article  PubMed  Google Scholar 

  98. Osman MA, Hennessy BT (2015) Obesity correlation with metastases development and response to first-line metastatic chemotherapy in breast cancer. Clin Med Insights Oncol 9:105–112

    Article  PubMed  PubMed Central  Google Scholar 

  99. Quail DF, Olson OC, Bhardwaj P, Walsh LA, Akkari L, Quick ML et al (2017) Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF. Nat Cell Biol 19(8):974–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D, Wei K et al (2018) Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol 19(12):1330–1340

    Article  CAS  PubMed  Google Scholar 

  101. McQuade JL, Daniel CR, Hess KR, Mak C, Wang DY, Rai RR et al (2018) Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol 19(3):310–322

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wang Z, Aguilar EG, Luna JI, Dunai C, Khuat LT, Le CT et al (2019) Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med 25(1):141–151

    Article  CAS  PubMed  Google Scholar 

  103. Kerr J, Anderson C, Lippman SM (2017) Physical activity, sedentary behaviour, diet, and cancer: an update and emerging new evidence. Lancet Oncol 18(8):e457–ee71

    Article  PubMed  Google Scholar 

  104. Rubio-Patiño C, Bossowski JP, De Donatis GM, Mondragón L, Villa E, Aira LE et al (2018) Low-protein diet induces IRE1α-dependent anticancer immunosurveillance. Cell Metab 27(4):828–42.e7

    Article  PubMed  Google Scholar 

  105. Hardee JP, Porter RR, Sui X, Archer E, Lee IM, Lavie CJ et al (2014) The effect of resistance exercise on all-cause mortality in cancer survivors. Mayo Clin Proc 89(8):1108–1115

    Article  PubMed  Google Scholar 

  106. Schmid D, Leitzmann MF (2014) Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol J 25(7):1293–1311

    Article  CAS  Google Scholar 

  107. Li Y, Gu M, **g F, Cai S, Bao C, Wang J et al (2016) Association between physical activity and all cancer mortality: dose-response meta-analysis of cohort studies. Int J Cancer 138(4):818–832

    Article  CAS  PubMed  Google Scholar 

  108. Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH et al (2016) Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab 23(3):554–562

    Article  CAS  PubMed  Google Scholar 

  109. Berrueta L, Bergholz J, Munoz D, Muskaj I, Badger GJ, Shukla A et al (2018) Stretching reduces tumor growth in a mouse breast cancer model. Sci Rep 8(1):7864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gupta PB, Proia D, Cingoz O, Weremowicz J, Naber SP, Weinberg RA et al (2007) Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Res 67(5):2062–2071

    Article  CAS  PubMed  Google Scholar 

  111. Iyer V, Klebba I, McCready J, Arendt LM, Betancur-Boissel M, Wu MF et al (2012) Estrogen promotes ER-negative tumor growth and angiogenesis through mobilization of bone marrow-derived monocytes. Cancer Res 72(11):2705–2713

    Article  CAS  PubMed  Google Scholar 

  112. Martinson HA, **dal S, Durand-Rougely C, Borges VF, Schedin P (2015) Wound healing-like immune program facilitates postpartum mammary gland involution and tumor progression. Int J Cancer 136(8):1803–1813

    Article  CAS  PubMed  Google Scholar 

  113. Betts CB, Pennock ND, Caruso BP, Ruffell B, Borges VF, Schedin P (2018) Mucosal immunity in the female murine mammary gland. J Immunol 201(2):734–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Amant F, von Minckwitz G, Han SN, Bontenbal M, Ring AE, Giermek J et al (2013) Prognosis of women with primary breast cancer diagnosed during pregnancy: results from an international collaborative study. J Clin Oncol 31(20):2532–2539

    Article  PubMed  Google Scholar 

  115. Taranova AG, Maldonado D 3rd, Vachon CM, Jacobsen EA, Abdala-Valencia H, McGarry MP et al (2008) Allergic pulmonary inflammation promotes the recruitment of circulating tumor cells to the lung. Cancer Res 68(20):8582–8589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bekaert S, Rocks N, Vanwinge C, Noel A, Cataldo D (2021) Asthma-related inflammation promotes lung metastasis of breast cancer cells through CCL11-CCR3 pathway. Respir Res 22(1):61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwei Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saw, P.E., Song, E. (2023). Distal Onco-Sphere: The Origin and Overview of Cancer Metastasis. In: Song, E. (eds) Tumor Ecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-99-1183-7_13

Download citation

Publish with us

Policies and ethics

Navigation