Diagnosis of Pulsed Discharge Plasma with Various Pulse Widths Under Open-Air Condition

  • Chapter
  • First Online:
Pulsed Discharge Plasmas

Part of the book series: Springer Series in Plasma Science and Technology ((SSPST))

  • 744 Accesses

Abstract

A method for estimating the size and electron density of open-air plasmas by its image is developed. The plasma density is then derived from the plasma inductance in open-air and approved by the comparisons with the commonly used current–voltage method and Stark broadening method. Applying the imaging and Stark broadening method, properties of the pulsed discharge under atmospheric pressure are investigated by adjusting the pulse width. As a result of the decrease of the pulse width, the upward trends appear in the electron density and excitation temperature, however, the downward trend is observed in the gas temperature. The global model is applied to simulate the temporal evolutions of the electron density and electron temperature. Both of the experimental and simulation results suggest that the discharge volume in open-air has a strong effect on the time-averaged electron density period whereas the time-averaged electron temperature within the pulse-on time is relied on the remnant electron density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Schulze, A. Derzsi, K. Dittmann, T. Hemke, J. Meichsner, Z. Donkó, Ionization by drift and ambipolar electric fields in electronegative capacitive radio frequency plasmas. Phys. Rev. Lett. 107(27), 275001 (2011)

    Article  Google Scholar 

  2. W. Lu, W. An, M. Zhou, C. Joshi, C. Huang, W.B. Mori, The optimum plasma density for plasma wakefield excitation in the blowout regime. New J. Phys. 12(8), 085002 (2010)

    Article  ADS  Google Scholar 

  3. K. Tsumori, M. Wada, Diagnostics tools and methods for negative ion source plasmas, a review. New J. Phys. 19(4), 045002 (2017)

    Article  ADS  Google Scholar 

  4. P. Bagde, S.G. Sapate, R.K. Khatirkar, N. Vashishtha, S. Tailor, Friction and wear behaviour of plasma sprayed Cr2O3-TiO2 coating. Mater. Res. Express 5(2), 026410 (2018)

    Article  ADS  Google Scholar 

  5. M. Yamada, S. Takahashi, N. Takada, H. Kanda, M. Goto, Synthesis of silver nanoparticles by atmospheric-pressure pulsed discharge plasma in a slug flow system. Jpn. J. Appl. Phys. 58(1), 016001 (2018)

    Article  ADS  Google Scholar 

  6. V. Boxhammer, G.E. Morfill, J.R. Jokipii, T. Shimizu, T. Klämpfl, Y.F. Li, J. Köritzer, J. Schlegel, J.L. Zimmermann, Bactericidal action of cold atmospheric plasma in solution. New J. Phys. 14(11), 113042 (2012)

    Google Scholar 

  7. G.E. Morfill, M.G. Kong, J.L. Zimmermann, Focus on plasma medicine. New J. Phys. 11(11), 115011 (2009)

    Article  ADS  Google Scholar 

  8. A.Y. Nikiforov, C. Leys, M.A. Gonzalez, J.L. Walsh, Electron density measurement in atmospheric pressure plasma jets: stark broadening of hydrogenated and non-hydrogenated lines. Plasma Sources Sci. Technol. 24(3), 034001 (2015)

    Article  ADS  Google Scholar 

  9. D. **ao, C. Cheng, J. Shen, Y. Lan, H. **e, X. Shu, Y. Meng, J. Li, P.K. Chu, Electron density measurements of atmospheric-pressure non-thermal N2 plasma jet by Stark broadening and irradiance intensity methods. Phys. Plasmas 21(5), 053510 (2014)

    Article  ADS  Google Scholar 

  10. N. Balcon, A. Aanesland, R. Boswell, Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon. Plasma Sources Sci. Technol. 16(2), 217 (2007)

    Article  ADS  Google Scholar 

  11. M.A. Gigosos, M.A. Gonzalez, V. Cardenoso, Computer simulated Balmer-alpha,-beta and-gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim. Acta, Part B 58(8), 1489–1504 (2003)

    Article  ADS  Google Scholar 

  12. J. Tang, W. Cao, W. Zhao, Y. Wang, Y. Duan, Characterization of stable brush-shaped large-volume plasma generated at ambient air. Phys. Plasmas 19(1), 149 (2012)

    Google Scholar 

  13. M. Laroussi, X. Lu, Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl. Phys. Lett. 87(11), 113902-113902-3 (2005)

    Google Scholar 

  14. S.N. Siadati, F. Sohbatzadeh, A. Valinataj Omran, DC superimposed ac high voltage: a new strategy for transferring stable he atmospheric pressure cold plasma bullets through long dielectric tubes. Phys. Plasmas 24(6), 310 (2017)

    Article  Google Scholar 

  15. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, 2005)

    Book  Google Scholar 

  16. J.P. Boeuf, B. Chaudhury, G.Q. Zhu, Theory and modeling of self-organization and propagation of filamentary plasma arrays in microwave breakdown at atmospheric pressure. Phys. Rev. Lett. 104(1), 015002 (2010)

    Article  ADS  Google Scholar 

  17. Y. Lu, S.F. Xu, X.X. Zhong, K. Ostrikov, U. Cvelbar, D. Mariotti, Characterization of a DC-driven microplasma between a capillary tube and water surface. EPL (Europhys. Lett.) 102(1), 15002 (2013)

    Article  ADS  Google Scholar 

  18. T. Shimizu, Y. Iwafuchi, G.E. Morfill, T. Sato, Formation of thermal flow fields and chemical transport in air and water by atmospheric plasma. New J. Phys. 13(5), 053025 (2011)

    Article  ADS  Google Scholar 

  19. H. Xu, D. Liu, W. **a, C. Chen, W. Wang, Z. Liu, X. Wang, M.G. Kong, Comparison between the water activation effects by pulsed and sinusoidal helium plasma jets. Phys. Plasmas 25(1), 013520 (2018)

    Article  ADS  Google Scholar 

  20. J.L. Walsh, J.J. Shi, M.G. Kong, Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets. Appl. Phys. Lett. 88(17), 171501 (2006)

    Article  ADS  Google Scholar 

  21. M. Kettlitz, H. Höft, T. Hoder, K.D. Weltmann, R. Brandenburg, Comparison of sinusoidal and pulsed-operated dielectric barrier discharges in an O2/N2 mixture at atmospheric pressure. Plasma Sources Sci. Technol. 22(2), 025003 (2013)

    Article  ADS  Google Scholar 

  22. X. Luo, J. Lu, E. Sohm, L. Ma, T. Wu, J. Wen, D. Qiu, Y. Xu, Y. Ren, J. Miller Dean, A. Khalil, Uniformly dispersed FeOx atomic clusters by pulsed arc plasma deposition: an efficient electrocatalyst for improving the performance of Li–O2 battery. Nano Res. 9(7), 1913–1920 (2016)

    Article  Google Scholar 

  23. M. Okumoto, A. Mizuno, Conversion of methane for higher hydrocarbon fuel synthesis using pulsed discharge plasma method. Catal. Today 71(1), 211–217 (2001)

    Article  Google Scholar 

  24. H. Guo, N. Jiang, H. Wang, K. Shang, N. Lu, J. Li, Y. Wu, Pulsed discharge plasma induced Wo3 catalysis for synergetic degradation of ciprofloxacin in water: synergetic mechanism and degradation pathway. Chemosphere 230(SEP.), 190 (2019)

    Google Scholar 

  25. J. Li, M. Sato, T. Ohshima, Degradation of phenol in water using a gas–liquid phase pulsed discharge plasma reactor. Thin Solid Films 515(9), 4283–4288 (2007)

    Article  ADS  Google Scholar 

  26. C.C. Hsu, C.Y. Wu, Electrical characterization of the glow-to-arc transition of an atmospheric pressure pulsed arc jet. J. Phys. D Appl. Phys. 42(21), 215202 (2009)

    Article  ADS  Google Scholar 

  27. J. Sun, Q. Wang, Z. Ding, X. Li, D. Wang, Numerical investigation of pulse-modulated atmospheric radio frequency discharges in helium under different duty cycles. Phys. Plasmas 18(12), 887 (2011)

    Article  Google Scholar 

  28. M. Kettlitz, H. Hft, T. Hoder, S. Reuter, R. Brandenburg, On the spatio-temporal development of pulsed barrier discharges: influence of duty cycle variation. J. Phys. D Appl. Phys. 45(24), 10 (2012)

    Article  Google Scholar 

  29. H. Park, W. Choe, Parametric study on excitation temperature and electron temperature in low pressure plasmas. Curr. Appl. Phys. 10(6), 1456–1460 (2010)

    Article  ADS  Google Scholar 

  30. X.M. Zhu, W.C. Chen, Y.K. Pu, Gas temperature, electron density and electron temperature measurement in a microwave excited microplasma. J. Phys. D Appl. Phys. 41(10), 105212 (2008)

    Article  ADS  Google Scholar 

  31. F.J. GordilloVázquez, M. Camero, C. GómezAleixandre, Spectroscopic measurements of the electron temperature in low pressure radiofrequency Ar/H2/C2H2 and Ar/H2/CH4 plasmas used for the synthesis of nanocarbon structures. Plasma Sources Sci. Technol. 15(1), 42 (2005)

    Article  Google Scholar 

  32. D. Staack, B. Farouk, A. Gutsol, A. Fridman, DC normal glow discharges in atmospheric pressure atomic and molecular gases. Plasma Sources Sci Technol 17(2), 431–438 (2008)

    Article  Google Scholar 

  33. A. Kramida, Y. Ralchenko, J. Reader, NIST Atomic Spectra Database (National Institute of Standards and Technology, Gaithersburg, MD, 2008)

    Google Scholar 

  34. V.M. Donnelly, M.V. Malyshev, Diagnostics of inductively coupled chlorine plasmas: measurements of the neutral gas temperature. Appl. Phys. Lett. 77(16), 2467–2469 (2000)

    Article  ADS  Google Scholar 

  35. P.J. Bruggeman, N. Sadeghi, D.C. Schram, V. Linss, Gas temperature determination from rotational lines in non-equilibrium plasmas: a review. Plasma Sources Sci. Technol. 23(2), 023001 (2014)

    Article  ADS  Google Scholar 

  36. S.J. Doyle, K.G. Xu, Use of thermocouples and argon line broadening for gas temperature measurement in a radio frequency atmospheric microplasma jet. Rev. Sci. Instrum. 88(2), 113902 (2017)

    Article  ADS  Google Scholar 

  37. P. Bruggeman, F. Iza, P. Guns, D. Lauwers, M.G. Kong, A.G. Yolanda, L. Christophe, C.S. Daan, Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission. Plasma Sources Sci. Technol. 19(1), 015016 (2010)

    Article  ADS  Google Scholar 

  38. J. He, J. Hu, D. Liu, Y.T. Zhang, Experimental and numerical study on the optimization of pulse-modulated radio-frequency discharges. Plasma Sources Sci. Technol. 22(3), 035008 (2013)

    Article  ADS  Google Scholar 

  39. S. Ashida, C. Lee, M.A. Lieberman, Spatially averaged (global) model of time modulated high density argon plasmas. J. Vac. Sci. Technol., A: Vac., Surf. Films 13(5), 854–861 (1995)

    Article  Google Scholar 

  40. J.T. Gudmundsson, Technical Report RH-21-2002 (University of Iceland, Science Institute, 2002)

    Google Scholar 

  41. G. Park, H. Lee, G. Kim, J.K. Lee, Global model of He/O2 and Ar/O2 atmospheric pressure glow discharges. Plasma Processes Polym. 5(6), 569–576 (2008)

    Article  Google Scholar 

  42. J.T. Guðmundsson, Electron Excitation Rate Coefficients for the Nitrogen Discharge (University of Iceland, Science Institute, 2005)

    Google Scholar 

  43. J.T. Gudmundsson, A.M. Marakhtanov, K.K. Patel, V.P. Gopinath, M.A. Lieberman, A reply to a comment on: on the plasma parameters of a planar inductive oxygen discharge. J. Phys. D Appl. Phys. 33(22), 3010–3012 (2000)

    Article  Google Scholar 

  44. J. Schulze, M. Daksha, A. Derzsi, S. Wilczek, J. Trieschmann, T. Mussenbrock, P. Awakowicz, Z. Donkó, T. Mussenbrock, The effect of realistic heavy particle induced secondary electron emission coefficients on the electron power absorption dynamics in single- and dual-frequency capacitively coupled plasmas. Plasma Sources Sci. Technol. 26(8), 085006 (2017)

    Article  ADS  Google Scholar 

  45. B.V. Gessel, R. Brandenburg, P. Bruggeman, Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure. Appl. Phys. Lett. 103(6), 777 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bowen Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, B., Zhong, X. (2023). Diagnosis of Pulsed Discharge Plasma with Various Pulse Widths Under Open-Air Condition. In: Shao, T., Zhang, C. (eds) Pulsed Discharge Plasmas. Springer Series in Plasma Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1141-7_15

Download citation

Publish with us

Policies and ethics

Navigation