Strengthening Processes and Effect Evaluation of Welded Structures with Laser Shock Peening

  • Chapter
  • First Online:
Laser Shock Peening
  • 143 Accesses

Abstract

Early research on LSP was mainly carried out on aluminum alloy welded joints, but there has been no substantial application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sano Y, Adachi T, Akita K et al (2007) Enhancement of surface property by low-energy laser peening without protective coating. Key Eng Mater 345–346:1589–1592

    Article  Google Scholar 

  2. Peng WW (2006) A study on strengthening effects of laser peening on stress corrosion cracking resistance of stainless steel welded joints (in Chinese). Nan**g Tech University

    Google Scholar 

  3. Wang DP, Huo LX (2000) Effect of overload on the fatigue properties of welded joints treated by ultrasonic peening method (in Chinese). Weld Joining 4:11–14

    Google Scholar 

  4. Clauer AH, Fairand BP, Wilcox BA (1977) Laser shock hardening of weld zones in aluminum alloys. Metall Trans A 8(12):1871–1876

    Article  Google Scholar 

  5. Zou SK, Wang J, Wang HM (2001) Effects of laser shock processing on the mechanical properties of welded joints (II) (in Chinese). Trans China Weld Inst 22(3):66–68

    Google Scholar 

  6. Zou SK, Wang HM (2001) Effects of laser shock processing on the mechanical properties of welded joints (I) (in Chinese). Trans China Weld Inst 22(3):79–81

    Google Scholar 

  7. Wang HM, Li XX, Sun XJ et al (2000) Study of surface mechanical properties of laser shock processed austenitic steel and Ni-based superalloy (in Chinese). Chin J Lasers 08:756–760

    Google Scholar 

  8. Wang DY, Feng JC, Xu W (2003) Effect of heat treatment on microstructures and mechanical properties of Al-Li-Cu alloy TIG welded joint (in Chinese). Trans China Weld Inst 24(06):23–25

    Google Scholar 

  9. Liu WH, Cao CX, Li Y et al (2008) Influence of postweld heat treatment on microstructure and mechanical properties of TIG welded joint of TD3 alloy (in Chinese). J Mater Eng 01:68–72

    Google Scholar 

  10. Ren XD, Zhang YK, Zhou JZ et al (2006) Laser-shock processing effects on mechanical properties of Ti-6AI-4V alloy (in Chinese). J Funct Mater 11:1781–1783

    Google Scholar 

  11. Du WB, Qin YL, Yan ZJ et al (2009) Effects of severe plastic deformation on microstructure and property of magnesium alloys (in Chinese). Rare Metal Mater Eng 38(10):1870–1875

    Google Scholar 

  12. Du H, Hong X (2002) The discovery on technology of laser welding of TC1 titanium alloy. Appl Laser 22(6):539–542

    Google Scholar 

  13. Li W, Li YH, Wang C et al (2009) Effects of stress state and microstructure change on metallic fatigue performance under laser shock processing (in Chinese). Aviation Precis Manufact Technol 45(03):37–39

    Google Scholar 

  14. Guo DH, Wu HX, Wang SB et al (1999) Study on mechanism of laser shock peening (in Chinese). Sci China Ser E-Technol Sci 03:222–226

    Google Scholar 

  15. Huang X, Chang M, Cao ZW et al (2018) Effects of two-side laser shot peening sequence on strengthening effect of TC4 titaniumn alloy laser welding sheet (in Chinese). Hot Working Technol 9:62–66

    Google Scholar 

  16. Zhong QP, Zhao ZH (2006) Fracture science (in Chinese). Higher Education Press, Bei**g, pp 261–270

    Google Scholar 

  17. Gao ZT (1980) Fatigue performance test (in Chinese). National Defense Industry Press, Bei**g, pp 145–156

    Google Scholar 

  18. Wang C, Ren XD, Zhou X et al (2009) Influence of laser shock processing on short crack growth of GH742 nickel-base alloy (in Chinese). Heat Treat Met 34(7):57–60

    Google Scholar 

  19. Cao JX, Fang B, Huang X et al (2004) Effects of microstructure on properties of TA15 titanium alloy (in Chinese). Chin J Rare Metals 02(2):362–364

    Google Scholar 

  20. **ao-Dong HE, Zhang JX, Gong SL, et al (2005) Finite element analysis of laser welding residual stress and distortion in welded joints of TC4 titanium alloy. J Mater Eng

    Google Scholar 

  21. Li ZY, Qian YY, Zhang JH (2000) Advanced connection method (in Chinese). Mechanical Industry Press, Bei**g

    Google Scholar 

  22. Chen YC (2000) Welding procedure qualification manual (in Chinese). Mechanical Industry Press, Bei**g

    Google Scholar 

  23. Li W, Li YH, He WF et al (2008) Development and application of laser shock processing (in Chinese). Laser Optoelectron Progress 12(12):15–19

    Article  Google Scholar 

  24. Zhang YK (2007) Key issues and application prospects of industrialization of laser shock peening (in Chinese). Laser Optoelectron Progress 03(03):74–77

    ADS  Google Scholar 

  25. Ren XD, Zhang YK, Zhou JZ et al (2007) Influence of laser-shock processing on fatigue life of titanium alloy (in Chinese). Chinses J Nonferrous Met 17(09):1486–1489

    Google Scholar 

  26. See DW, Dulaney JL, Clauer AH et al (2002) The air force manufacturing technology laser peening initiative. Surf Eng 18(1):32–36

    Article  Google Scholar 

  27. Davis BM, Mannava SR, Rockstroh TJ (2004) Performance of Gen IV LSP for thick section airfoil damage tolerance. Palm Springs, CA(US):2062, 10

    Google Scholar 

  28. Xu HY, Zhang W, Cao ZW et al (2013) Microstructure and properties of TA15 EBW joints optimized by laser shock processing. Rare Metal Mater Eng S2:151–154

    Google Scholar 

  29. Liu XS, Ji SD, Fang HY (2005) Numerical simulation and welding stress and distortion control of titanium alloy thin plate. Trans Nonferrous Met Soc China 15(s2):101–104

    Google Scholar 

  30. Shikai LI, **ong B, Hui S (2007) Effects of cooling rate on the fracture properties of TA15 ELI alloy plates. Rare Met 26(01):33–38

    Article  Google Scholar 

  31. Ni MX, Zhou JZ, Yang CJ et al (2006) Investigation of generation mechanism and influencing factors on residual stress fields by laser shock processing (in Chinese). Appl Laser 26(2):73–77

    Google Scholar 

  32. Clauer AH, Lahrman DF (2001) Laser shock processing as a surface enhancement process. Key Eng Mater 197(1775):121–144

    Article  Google Scholar 

  33. Yang WT, Long XQ (2008) Special corrosion types of titanium alloy used in civil aircraft. Total Corros Control 2:4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikun Zou .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 National Defense Industry Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zou, S., Wu, J., Cao, Z., Che, Z. (2023). Strengthening Processes and Effect Evaluation of Welded Structures with Laser Shock Peening. In: Laser Shock Peening. Springer, Singapore. https://doi.org/10.1007/978-981-99-1117-2_8

Download citation

Publish with us

Policies and ethics

Navigation