Part of the book series: Springer Theses ((Springer Theses))

  • 175 Accesses

Abstract

Organoboron represents an organic compound bearing boron atom(s) in the molecule. The compounds play essential roles in organic synthesis because of their adequate reactivity derived from the electrophilicity of the boron center and the nucleophilicity of the carbon–boron bond. This chapter provides a brief introduction to the early development of organoboron compounds, their derivatization reactions, and their current applications. The latter part focuses on the preparation of organoboronates, the esters of organoboronic acids. In 2000, the Hosomi and Ito group and the Miyaura and Ishiyama group independently developed copper(I)-catalyzed borylation reactions using diboronic acid esters. The active species in the reaction, a boryl copper(I) intermediate, has a variety of reaction modes including a conjugate addition, 1,2-insertion, and radical generation. Therefore, this catalytic system has been used for various borylation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall DG (ed) (2011) Boronic acids: preparation, applications in organic synthesis and medicine, vols 1–2. Wiley-VCH, Weinheim

    Google Scholar 

  2. Fyfe JWB, Watson AJB (2017) Recent developments in organoboron chemistry: old dogs, new tricks. Chem 3:31–55

    Article  CAS  Google Scholar 

  3. Frankland E, Duppa B (1860) On boric ethide. Proc R Soc London 10:568–570

    Article  Google Scholar 

  4. Frankland E, Duppa B (1860) Vorläufige Notiz Über Boräthyl. Justus Liebigs Ann Chem 115:319–322

    Article  Google Scholar 

  5. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  6. Crudden CM, Glasspoole BW, Lata CJ (2009) Expanding the scope of transformations of organoboron species: carbon-carbon bond formation with retention of configuration. Chem Commun 6704–6716

    Google Scholar 

  7. . Leonori D, Aggarwal VK (2015) Stereospecific couplings of secondary and tertiary boronic esters. Angew Chem Int Ed 54:1082–1096

    Google Scholar 

  8. Diner C, Szabó KJ (2017) Recent advances in the preparation and application of allylboron species in organic synthesis. J Am Chem Soc 139:2–14

    Article  CAS  PubMed  Google Scholar 

  9. Sandford C, Aggarwal VK (2017) Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chem Commun 53:5481–5494

    Article  CAS  Google Scholar 

  10. Carreras J, Caballero A, Pérez PJ (2019) Alkenyl boronates: synthesis and applications. Chem Asian J 14:329–343

    Article  CAS  PubMed  Google Scholar 

  11. Snyder HR, Kuck JA, Johnson RJ (1938) Organoboron compounds, and the study of reaction mechanisms. Primary aliphatic boronic acids. J Am Chem Soc 60:105–111

    Google Scholar 

  12. Johnson JR, Van Campen MG, Grummitt O (1938) Organoboron compounds. II. The reducing action of some organoboronic acids. J Am Chem Soc 60:111–115

    Google Scholar 

  13. Johnson JR, Snyder HR, Van Campen MG (1938) Organoboron compounds. III. Reactions of tri-n-butylborine. J Am Chem Soc 60:115–121

    Google Scholar 

  14. Johnson JR, Van Campen MG (1938) Organoboron compounds. IV. Reaction of tri-n-butylborine with peroxides and with oxygen. Mechanism of autoöxidation. J Am Chem Soc 60:121–124

    Google Scholar 

  15. Brown HC, Subba Rao BC (1956) A New technique for the conversion of olefins into organoboranes and related alcohols. J Am Chem Soc 78:5694–5695

    Article  CAS  Google Scholar 

  16. Brown HC, Subba Rao BC (1957) Hydroboration of olefins. A remarkably fast room-temperature addition of diborane to olefins. J Org Chem 22:1136–1137

    Google Scholar 

  17. Brown HC, Zweifel G (1961) Hydroboration. IX. The hydroboration of cyclic and bicyclic olefins-stereochemistry of the hydroboration reaction. J Am Chem Soc 83:2544–2551

    Google Scholar 

  18. Miyaura N, Suzuki A (1979) Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J Chem Soc Chem Commun 866–867

    Google Scholar 

  19. Miyaura N, Yamada K, Suzuki A (1979) A New stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett 20:3437–3440

    Article  Google Scholar 

  20. Miyaura N (2002) Cross-coupling reaction of organoboron compounds via base-assisted transmetalation to palladium(II) complexes. J Organomet Chem 653:54–57

    Article  CAS  Google Scholar 

  21. Lennox AJJ, Lloyd-Jones GC (2014) Selection of boron reagents for Suzuki-Miyaura coupling. Chem Soc Rev 43:412–443

    Article  CAS  PubMed  Google Scholar 

  22. Enantioselective, rhodium-catalyzed 1,4-addition of organoboron reagents to electron-deficient alkenes. In: Organic reactions, vol 93. Wiley, Hoboken, NJ, USA, pp 1–686

    Google Scholar 

  23. Aydin M (ed) (2019) Recent advances in boron-containing materials. IntechOpen

    Google Scholar 

  24. Ren Y, Jäkle F (2016) Merging thiophene with boron: new building blocks for conjugated materials. Dalton Trans 45:13996–14007

    Article  CAS  PubMed  Google Scholar 

  25. Haque A, Al-balushi RA, Raithby PR, Khan MS (2020) Recent advances in π-conjugated NˆC-chelate. Molecules 25:2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee H, Karthik D, Lampande R, Ryu JH, Kwon JH (2020) Recent advancement in boron-based efficient and pure blue thermally activated delayed fluorescence materials for organic light-emitting diodes. Front Chem 8:1–16

    Article  Google Scholar 

  27. Dhiman A, Giribabu L, Trivedi R (2021) π-Conjugated materials derived from boron-chalcogenophene combination. A brief description of synthetic routes and optoelectronic applications. Chem Rec 21:1738–1770

    Google Scholar 

  28. Song S, Gao P, Sun L, Kang D, Kongsted J, Poongavanam V, Zhan P, Liu X (2021) Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharm Sin B 11:3035–3059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pineschi M (2021) Boron reagents and catalysts for the functionalization of strained heterocycles. Adv Synth Catal 2325–2339

    Google Scholar 

  30. Qi Y, Cao X, Zou Y, Yang C (2021) Multi-resonance organoboron-based fluorescent probe for ultra-sensitive, selective and reversible detection of fluoride ions. J Mater Chem C 9:1567–1571

    Article  CAS  Google Scholar 

  31. Adams J, Behnke M, Chen S, Cruickshank AA, Dick LR, Grenier L, Klunder JM, Ma YT, Plamondon L, Stein RL (1998) Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorganic Med Chem Lett 8:333–338

    Article  CAS  Google Scholar 

  32. Corey EJ, Bakshi RK, Shibata S (1987) Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications. J Am Chem Soc 109:5551–5553

    Google Scholar 

  33. Corey EJ, Helal CJ (1998) Remarkable advances in catalytic methods for enantio- selective synthesis of chiral organic molecules have chemistry. Great progress has been made not only in reduction of carbonyl compounds with chiral oxazaborolidine catalysts: a new paradigm for enan. Angew Chem Int Ed 37:1986–2012

    Google Scholar 

  34. Cho BT (2006) Recent advances in the synthetic applications of the oxazaborolidine-mediated asymmetric reduction. Tetrahedron 62:7621–7643; Cho BT (2009) Recent development and improvement for boron hydride-based catalytic asymmetric reduction of unsymmetrical ketones. Chem Soc Rev 38:443–452

    Google Scholar 

  35. Shende VS, Singh P, Bhanage BM (2018) Recent trends in organocatalyzed asymmetric reduction of prochiral ketones. Catal Sci Technol 8:955–969

    Article  CAS  Google Scholar 

  36. Schwinger DP, Bach T (2020) Chiral 1,3,2-oxazaborolidine catalysts for enantioselective photochemical reactions. Acc Chem Res 53:1933–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Männig D, Nöth H (1985) Catalytic hydroboration with rhodium complexes. Angew Chem Int Ed 24:878–879

    Google Scholar 

  38. Burgess K, Ohlmeyer MJ (1991) Transition-metal-promoted hydroborations of alkenes, emerging methodology for organic transformations. Chem Rev 91:1179–1191

    Article  CAS  Google Scholar 

  39. Carroll AM, O’Sullivan TP, Guiry PJ (2005) The development of enantioselective rhodium-catalysed hydroboration of olefins. Adv Synth Catal 347:609–631

    Article  CAS  Google Scholar 

  40. Ishiyama T, Murata M, Miyaura N (1995) Palladium(0)-catalyzed cross-coupling reaction of alkoxydiboron with haloarenes: a direct procedure for arylboronic esters. J Org Chem 60:7508–7510

    Article  CAS  Google Scholar 

  41. Takagi J, Takahashi K, Ishiyama T, Miyaura N (2002) Palladium-catalyzed cross-coupling reaction of bis(pinacolato)diboron with 1-alkenyl halides or triflates: convenient synthesis of unsymmetrical 1,3-dienes via the borylation-coupling sequence. J Am Chem Soc 124:8001–8006

    Article  CAS  PubMed  Google Scholar 

  42. Ishiyama T, Miyaura N (2004) Metal-catalyzed reactions of diborons for synthesis of organoboron compounds. Chem Rec 3:271–280

    Article  CAS  PubMed  Google Scholar 

  43. Chow WK, Yuen OY, Choy PY, So CM, Lau CP, Wong WT, Kwong FY (2013) A decade advancement of transition metal-catalyzed borylation of aryl halides and sulfonates. RSC Adv 3:12518–12539

    Article  CAS  Google Scholar 

  44. Waltz KM, He X, Muhoro C, Hartwig JF (1995) Hydrocarbon functionalization by transition metal boryls. J Am Chem Soc 117:11357–11358

    Article  CAS  Google Scholar 

  45. Waltz KM, Hartwig JF (2000) Functionalization of alkanes by isolated transition metal boryl complexes. J Am Chem Soc 122:11358–11369

    Article  CAS  Google Scholar 

  46. Chen H, Schlecht S, Semple TC, Hartwig JF (2000) Thermal, catalytic, regiospecific functionalization of alkanes. Science 287:1995–1997

    Article  CAS  PubMed  Google Scholar 

  47. Takagi J, Sato K, Hartwig JF, Ishiyama T, Miyaura N (2002) Iridium-catalyzed c-h coupling reaction of heteroaromatic compounds with bis(pinacolato)diboron: regioselective synthesis of heteroarylboronates. Tetrahedron Lett 43:5649–5651

    Article  CAS  Google Scholar 

  48. Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig JF (2002) Mild iridium-catalyzed borylation of arenes. high turnover numbers, room temperature reactions, and isolation of a potential intermediate. J Am Chem Soc 124:390–391

    Google Scholar 

  49. Mkhalid IAI, Barnard JH, Marder TB, Murphy JM, Hartwig JF (2010) C-H activation for the construction of C–B bonds. Chem Rev 110:890–931

    Article  CAS  PubMed  Google Scholar 

  50. Hartwig JF (2011) Regioselectivity of the borylation of alkanes and arenes. Chem Soc Rev 40:1992–2002

    Article  CAS  PubMed  Google Scholar 

  51. Xu L, Wang G, Zhang S, Wang H, Wang L, Liu L, Jiao J, Li P (2017) Recent advances in catalytic C−H borylation reactions. Tetrahedron 73:7123–7157

    Article  CAS  Google Scholar 

  52. Kuroda Y, Nakao Y (2019) Catalyst-enabled site-selectivity in the iridium-catalyzed CH borylation of arenes. Chem Lett 48:1092–1100

    Article  CAS  Google Scholar 

  53. Wang M, Shi Z (2020) Methodologies and strategies for selective borylation of C-Het and C–C bonds. Chem Rev 120:7348–7398

    Article  CAS  PubMed  Google Scholar 

  54. Yadagiri B, Daipule K, Singh SP (2021) Photoinduced borylation reactions: an overview. Asian J Org Chem 10:7–37

    Article  CAS  Google Scholar 

  55. Ito H, Yamanaka H, Tateiwa J, Hosomi A (2000) Boration of an α, β-enone using a diboron promoted by a copper(I)–phosphine mixture catalyst. Tetrahedron Lett 41:6821–6825

    Article  CAS  Google Scholar 

  56. Takahashi K, Ishiyama T, Miyaura N (2000) Addition and coupling reactions of bis(pinacolato)diboron mediated by CuCl in the presence of potassium acetate. Chem Lett 57:982–983

    Article  Google Scholar 

  57. Takahashi K, Ishiyama T, Miyaura N (2001) A borylcopper species generated from bis(pinacolato)diboron and its additions to α, β-unsaturated carbonyl compounds and terminal alkynes. J Organomet Chem 625:47–53

    Article  CAS  Google Scholar 

  58. Neeve EC, Geier SJ, Mkhalid IAI, Westcott SA, Marder TB (2016) Diboron(4) compounds: from structural curiosity to synthetic workhorse. Chem Rev 116:9091–9161

    Article  CAS  PubMed  Google Scholar 

  59. Kubota K, Iwamoto H, Ito H (2017) Formal nucleophilic borylation and borylative cyclization of organic halides. Org Biomol Chem 15:285–300

    Article  CAS  PubMed  Google Scholar 

  60. Hemming D, Fritzemeier R, Westcott SA, Santos WL, Steel PG (2018) Copper-boryl mediated organic synthesis. Chem Soc Rev 47:7477–7494

    Article  CAS  PubMed  Google Scholar 

  61. Takale BS, Thakore RR, Etemadi-Davan E, Lipshutz BH (2020) Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation. Beilstein J Org Chem 16:691–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ito H, Kawakami C, Sawamura M (2005) Copper-catalyzed γ-selective and stereospecific substitution reaction of allylic carbonates with diboron: efficient route to chiral allylboron compounds. J Am Chem Soc 127:16034–16035

    Article  CAS  PubMed  Google Scholar 

  63. Ito H, Ito S, Sasaki Y, Matsuura K, Sawamura M (2007) Copper-catalyzed enantioselective substitution of allylic carbonates with diboron: an efficient route to optically active α-chiral allylboronates. J Am Chem Soc 129:14856–14857

    Article  CAS  PubMed  Google Scholar 

  64. Kubota K, Hayama K, Iwamoto H, Ito H (2015) Enantioselective borylative dearomatization of indoles through copper(I) catalysis. Angew Chem Int Ed 54:8809–8813

    Google Scholar 

  65. Hayama K, Kubota K, Iwamoto H, Ito H (2017) Copper(I)-catalyzed diastereoselective dearomative carboborylation of indoles. Chem Lett 46:1800–1802

    Article  CAS  Google Scholar 

  66. Hayama K, Kojima R, Kubota K, Ito H (2020) Synthesis of chiral N-heterocyclic allylboronates via the enantioselective borylative dearomatization of pyrroles. Org Lett 22:739–744

    Article  CAS  PubMed  Google Scholar 

  67. Shimizu Y, Kanai M (2014) Recent progress in copper-catalyzed difunctionalization of unactivated carboncarbon multiple bonds. Tetrahedron Lett 55:3727–3737

    Article  CAS  Google Scholar 

  68. Liu Z, Gao Y, Zeng T, Engle KM (2020) Transition-metal-catalyzed 1,2-carboboration of alkenes: strategies, mechanisms, and stereocontrol. Isr J Chem 60:219–229

    Article  CAS  PubMed  Google Scholar 

  69. Kleeberg C, Dang L, Lin Z, Marder TB (2009) A facile route to aryl boronates: room-temperature, copper-catalyzed borylation of aryl halides with alkoxy diboron reagents. Angew Chem 121:5454–5458

    Article  Google Scholar 

  70. Niwa T, Ochiai H, Hosoya T (2017) Copper-catalyzed ipso-borylation of fluoroarenes. ACS Catal 7:4535–4541

    Google Scholar 

  71. Yang CT, Zhang ZQ, Tajuddin H, Wu CC, Liang J, Liu JH, Fu Y, Czyzewska M, Steel PG, Marder TB, Liu L (2012) Alkylboronic esters from copper-catalyzed borylation of primary and secondary alkyl halides and pseudohalides. Angew Chem Int Ed 51:528–532

    Google Scholar 

  72. Ito H, Kubota K (2012) Copper(I)-catalyzed boryl substitution of unactivated alkyl halides. Org Lett 14:890–893

    Article  CAS  PubMed  Google Scholar 

  73. Laitar DS, Müller P, Sadighi JP (2005) Efficient homogeneous catalysis in the reduction of CO2 to CO. J Am Chem Soc 127:17196–17197

    Article  CAS  PubMed  Google Scholar 

  74. Semba K, Shinomiya M, Fujihara T, Terao J, Tsuji Y (2013) Highly selective copper-catalyzed hydroboration of allenes and 1,3-dienes. Chem Eur J 19:7125–7132

    Article  CAS  PubMed  Google Scholar 

  75. Semba K, Fujihara T, Terao J, Tsuji Y (2015) Copper-catalyzed borylative transformations of non-polar carbon-carbon unsaturated compounds employing borylcopper as an active catalyst species. Tetrahedron 71:2183–2197

    Article  CAS  Google Scholar 

  76. Drescher W, Kleeberg C (2019) Terminal versus bridging boryl coordination in N-heterocyclic carbene copper(I) boryl complexes: syntheses, structures, and dynamic behavior. Inorg Chem 58:8215–8229

    Article  CAS  PubMed  Google Scholar 

  77. Drescher W, Borner C, Kleeberg C (2021) Stability and decomposition of copper(I) boryl complexes: [(IDipp)Cu-Bneop], [(IDipp∗)Cu-Bneop] and copper clusters. New J Chem 45:14957–14964

    Google Scholar 

  78. Segawa Y, Yamashita M, Nozaki K (2007) Boryl anion attacks transition-metal chlorides to form boryl complexes: syntheses, spectroscopic, and structural studies on group 11 borylmetal complexes. Angew Chem Int Ed 46:6710–6713

    Google Scholar 

  79. Kajiwara T, Terabayashi T, Yamashita M, Nozaki K (2008) Syntheses, structures, and reactivities of borylcopper and -zinc compounds: 1,4-silaboration of an α, β-unsaturated ketone to form a γ-siloxyallylborane. Angew Chem Int Ed 47:6606–6610

    Google Scholar 

  80. Okuno Y, Yamashita M, Nozaki K (2011) One-Pot carboboration of alkynes using lithium borylcyanocuprate and the subsequent Suzuki-Miyaura cross-coupling of the resulting tetrasubstituted alkenylborane. Eur J Org Chem 3951–3958

    Google Scholar 

  81. Borner C, Anders L, Brandhorst K, Kleeberg C (2017) Elusive phosphine copper(I) boryl complexes: synthesis, structures, and reactivity. Organometallics 36:4687–4690

    Article  CAS  Google Scholar 

  82. Kleeberg C, Borner C (2018) Syntheses, structures, and reactivity of NHC copper(I) boryl complexes: a systematic study. Organometallics 37:4136–4146

    Article  CAS  Google Scholar 

  83. Tobisch S (2017) Copper-catalysed aminoboration of vinylarenes with hydroxylamine esters-A computational mechanistic study. Chem Eur J 23:17800–17809

    Article  CAS  PubMed  Google Scholar 

  84. Iwamoto H, Ozawa Y, Takenouchi Y, Imamoto T, Ito H (2021) Backbone-modified C2-symmetrical chiral bisphosphine TMS-QuinoxP*: asymmetric borylation of racemic allyl electrophiles. J Am Chem Soc 143:6413–6422

    Article  CAS  PubMed  Google Scholar 

  85. Ozawa Y, Iwamoto H, Ito H (2018) Copper(I)-catalysed regio- and diastereoselective intramolecular alkylboration of terminal allenes via allylcopper(I) isomerization. Chem Commun 54:4991–4994

    Article  CAS  Google Scholar 

  86. Ozawa Y, Endo K, Ito H (2021) Regio- and stereoselective synthesis of multi-alkylated allylic boronates through three-component coupling reactions between allenes, alkyl halides, and a diboron reagent. J Am Chem Soc 143:13865–13877

    Article  CAS  PubMed  Google Scholar 

  87. Iwamoto H, Endo K, Ozawa Y, Watanabe Y, Kubota K, Imamoto T, Ito H (2019) Copper(I)-catalyzed enantioconvergent borylation of racemic benzyl chlorides enabled by quadrant-by-quadrant structure modulation of chiral bisphosphine ligands. Angew Chem Int Ed 58:11112–11117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozawa, Y. (2023). General Introduction. In: Copper(I)-Catalyzed Stereoselective Borylation Reactions. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-99-1098-4_1

Download citation

Publish with us

Policies and ethics

Navigation