Insect Predators Immature Stages Biology

  • Chapter
  • First Online:
Worldwide Predatory Insects in Agroecosystems

Abstract

Getting accurate information on natural enemies’ biology and interactions with herbivorous insects is one of the first tasks before they can be used effectively as mass-raised biological control agents. Each predator may have different methods depending on the field conditions, such as the usage of microhabitats or adjusting their activity cycles, to cope with stress conditions like drought. To determine this predator’s applicability as a biological control agent, it is crucial to understand its habits of survival and diet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas S, Pérez-Hedo M, Colazza S et al (2014) The predatory mirid Dicyphus maroccanus as a new potential biological control agent in tomato crops. BioControl 59(5):565–574

    Article  Google Scholar 

  • Abraham VA, Kurian C (1973) Chelisoches moris F. (Forficulidae: Dermaptera), a predator on eggs and early instar grubs of the red palm weevil Rhynchophorus ferrugineus F. (Curculionidae: Coleoptera). J Plant Crop 1:147–152

    Google Scholar 

  • Ahmad SH, Kamarudin N (2016) Growth and longevity of the insect predator, Sycanus dichotomus Stål (Hemiptera: Reduviidae) fed on live insect larvae. J Oil Palm Res 28:471–478

    Article  Google Scholar 

  • Almohamad R, Verheggen F, Haubruge É (2009) Searching and oviposition behavior of aphidophagous hover flies (Diptera: Syrphidae): a review. Biotechnol Agron Soc Environ 13:467–481

    Google Scholar 

  • Ambrose DP, Livingstone D (1985) Development of Coranus vitellinus Distant (Hemiptera: Reduviidae: Harpactorinae). J Soil Biol Ecol 5(1):65–71

    Google Scholar 

  • Ambrose DP, Sebasti Rajan XJ, Nagarajan K et al (2009) Biology, behaviour and functional response of Sphedanolestes variabilis Distant (Insecta: Hemiptera: Reduviidae: Harpactorinae), a potential predator of lepidopteran pests. Entomol Croat 13(2):33–44

    Google Scholar 

  • Ambrose DP, Nagarajan K, Kumar AG (2013) Interaction of reduviid predator, Rhynocoris marginatus (Fabricius) (Hemiptera: Reduviidae) with its prey teak skeletonizer, Eutectona machaeralis Walker (Lepidoptera: Pyralidae) as revealed through functional response. J Entomol Res 37(1):55–59

    Google Scholar 

  • Amer ME, Abdel-Razak SI, El-Sobky HF (2021) Influences of some insect pests as prays on biology and consumption rate of predator, Oruis albidipennis (Reuter) (Hemiptera, Anthocoridae) under laboratory conditions. J Plant Prot Pathol 12(1):37–42

    Google Scholar 

  • Angilletta MJ Jr, Dunham AE (2003) The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am Nat 162(3):332–342

    Article  PubMed  Google Scholar 

  • Arcaya E, Pérez-Bañón C, Mengual X et al (2017) Life table and predation rates of the syrphid fly Allograpta exotica, a control agent of the cowpea aphid Aphis craccivora. Biol Control 115:74–84

    Article  Google Scholar 

  • Ballal CR, Varshney R, Joshi S (2019) Morphology, biology and predation capacity of Amphiareus constrictus (Stål) (Hemiptera: Anthocoridae). Neotrop Entomol 48(4):668–677

    Article  CAS  PubMed  Google Scholar 

  • Belliure B, Michaud JP (2001) Biology and behavior of Pseudodorus clavatus (Diptera: Syrphidae), an important predator of citrus aphids. Ann Entomol Soc Am 94(1):91–96

    Article  Google Scholar 

  • Bharadwaj RK (1966) Observations on the bionomics of Euborellia annulipes (Dermaptera: Labiduridae). Ann Entomol Soc Am 59(3):441–450

    Article  Google Scholar 

  • Bhatia ML (1939) Biology, morphology and anatomy of aphidophagous syrphid larvae. Parasitology 31(1):78–120

    Article  Google Scholar 

  • Boevé JL (2021) Some sawfly larvae survive predator-prey interactions with pentatomid Picromerus bidens. Sci Nat 108(2):1–8

    Article  Google Scholar 

  • Boopathi T, Singh SB, Dutta SK et al (2020) Biology, predatory potential, life table, and field evaluation of Propylea dissecta (Coleoptera: Coccinellidae), against Lipaphis erysimi (Hemiptera: Aphididae) on broccoli. J Econ Entomol 113(1):88–97

    Article  PubMed  Google Scholar 

  • Carvalho VFP, Vacari AM, Pomari AF et al (2012) Interaction between Podisus nigrispinus and Bacillus thuringiensis. Environ Entomol 41:1454–1461

    Article  CAS  PubMed  Google Scholar 

  • Carvalho GASD, Martins DJ, Brito IMCD et al (2018) Can Bacillus thuringiensis affect the biological variables of natural enemies of Lepidoptera? Arq Inst Biol 85:1–6

    Article  Google Scholar 

  • Claver MA, Reegan AD (2010) Biology and mating behaviour of Coranus spiniscutis Reuter (Hemiptera: Reduviidae), a key predator of rice Gandhi bug Leptocorisa varicornis Fabricius. J Biopest 3(2):437

    Google Scholar 

  • De Clercq P, Merlevede F, Tirry L (1998) Unnatural prey and artificial diets for rearing Podisus maculiventris (Heteroptera: Pentatomidae). Biol Control 12(2):137–142

    Article  Google Scholar 

  • Faheem M, Saeed S, Sajjad A et al (2019) Biological parameters of two syrphid fly species Ischiodon scutellaris (Fabricius) and Episyrphus balteatus (DeGeer) and their predatory potential on wheat aphid Schizaphis graminum (Rondani) at different temperatures. Egypt J Biol Pest Control 29:2. https://doi.org/10.1186/s41938-019-0105-0

    Article  Google Scholar 

  • Fathipour Y, Jafari A (2008) Biology of Nabis capsiformis (Het., Nabidae) preying upon i> Creontiades pallidus (Het., Miridae) in laboratory conditions. JWSS-Isfahan Univ Technol 12(43):157–166

    Google Scholar 

  • Gallard L (1932) Notes on the feeding habits of the brown moth-lacewing, Ithone fusca. Austr Nat 8:168–170

    Google Scholar 

  • Geethalakshmi L, Muthukrishnan N, Chandrasekaran M et al (2000) Chrysopids biology on Corcyra cephalonica and feeding potential on different host insects. Ann Plant Prot Sci 8(2):132–135

    Google Scholar 

  • George PJE (1999) Biology and life table studies of the reduviid Rhynocoris marginatus (Fabrcius) (Heteroptera: Reduviidae) on three lepidopteran insect pests. J Biol Control 13:33–38

    Google Scholar 

  • Ghanim AA, El-Serafy HA, Hassan HA et al (2021) Biological aspects of two Coccinellid predatory insects reared on artificial diets and natural preys under constant temperature. J Plant Prot Pathol 12(1):19–22

    Google Scholar 

  • Grazia J, Panizzi AR et al (2015) Stink Bugs (Pentatomidae). In: Panizzi AR, Grazia J (eds) True bugs (Heteroptera) of the neotropics. Springer, Dordrecht, pp 681–756. https://doi.org/10.1007/978-94-017-9861-7_2

    Chapter  Google Scholar 

  • Greyvenstein BM (2020) Distribution of Mantodea in South Africa and biological studies of selected species. Doctor of Philosophy in Environmental Sciences at the North-West University

    Google Scholar 

  • Greyvenstein B, du Plessis H, Van den Berg J (2021) Life history of the false flower mantid (Harpagomantis tricolor Linnaeus, 1758) (Mantodea: Galinthiadidae) and its distribution in southern Africa. J Orthoptera Res 30:17

    Article  Google Scholar 

  • Harris HM (1928) A monographic study of the hemipterous family Nabidae as it occurs in North America (1928). Retrospective Theses and Dissertations 14758. https://lib.dr.iastate.edu/rtd/14758

  • Henry CS, Penny ND, Adams PA (1992) The neuropteroid orders of Central America (Neuroptera and Megaloptera), pp 432–458. In: Quintero D, Aiello A (eds) Insects of Panama and Mesoamerica. Oxford University Press, Oxford, p 692

    Google Scholar 

  • Hoffman KM, Brushwein JR (1989) Species of spiders (Araneae) associated with the immature stages of Mantispa pulchella (Neuroptera, Mantispidae). J Arachnol 17:7–14

    Google Scholar 

  • Hoffman KM, Brushwein JR (1990) Spider (Araneae) taxa associated with the immature stages of Mantispa interrupta (Neuroptera: Mantispidae). Entomol News 101(1):23–28

    Google Scholar 

  • Hormchan P, Schuster MF, Hepner LW (1976) Biology of Tropiconabis capsiformis. Ann Entomol Soc Am 69(6):1016–1018

    Article  Google Scholar 

  • Hussain M, Wang Z, Arthurs SP (2022) A review of Franklinothrips vespiformis (Thysanoptera: Aeolothripidae): life history, distribution, and prospects as a biological control agent. Insects 13(2):108

    Article  PubMed  PubMed Central  Google Scholar 

  • Jalilian F (2015a) Development and feeding capacity of Scaeva albomaculata (Macqaurt) (Diptera: Syrphidae) fed with rose aphid, Macrosiphum rosae (Homoptera: Aphididae). Biol Forum 7(1):1377–1381

    Google Scholar 

  • Jalilian F (2015b) Biology and larval feeding rate of Episyrphus balteatus (Dip.: Syrphidae) on Aphis pomi (Hom.: Aphididae) at laboratory conditions. Biol Forum 7(1):1395–1399

    Google Scholar 

  • Jalilian F, Karimpour Y, Aramideh S (2016) Investigation on some biological characteristics of Eupeodes corollae (Dip.: Syrphidae) on Aphis pomi (Hom: Aphididae) in vitro. J Entomol Zool Stud 4:432–435

    Google Scholar 

  • Joshi S, Venkatesan T, Ballal CR et al (1999) Comparative biology and predatory efficiency of six syrphids on Aphis craccivora Koch. Pest Manag Hortic Ecosyst 5(1):1–6

    Google Scholar 

  • Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evol Ecol Res 10(2):251–268

    Google Scholar 

  • Joshi SS, David KJ, Sachin K (2023) Syrphid Predators (Diptera: Brachycera). In: Insect Predators in Pest Management. CRC Press, pp 229–243

    Chapter  Google Scholar 

  • Koppenhöfer AM (1995) Bionomics of the earwig species Euborellia annulipes in Western Kenya (Dermaptera: Carcinophoridae). Entomol Gen 20:81–85

    Article  Google Scholar 

  • Kubavat AK, Jethva DM, Wadaskar PS (2017) Biology and feeding potential of Chrysoperla zastrowisillemi (Esben Peterson) on eggs of Corcyra cephalonica (Stainton). Environ Ecol 35(3A):1948–1952

    Google Scholar 

  • Lemos WP, Ramalho FS, Serrão JE et al (2003) Effects of diet on development of Podisus nigrispinus (Dallas) (Het., Pentatomidae), a predator of the cotton leafworm. J Appl Entomol 127(7):389–395

    Article  Google Scholar 

  • Lillo I, Perez-Bañón C, Rojo S (2021) Life cycle, population parameters, and predation rate of the hover fly Eupeodes corollae fed on the aphid Myzus persicae. Entomol Exp Appl 169(11):1027–1038

    Article  Google Scholar 

  • Liu P, Jia W, Zheng X et al (2018) Predation functional response and life table parameters of Orius sauteri (Hemiptera: Anthocoridae) feeding on Megalurothrips usitatus (Thysanoptera: Thripidae). Fla Entomol 101(2):254–259

    Article  Google Scholar 

  • Madadi H, Ahmadi Z, Heshmati A (2016) Biology and life table parameters of predatory bugs Nabis pseduferus (Hemiptera: Nabidae). In: Proceedings of 22 College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran, p 584

    Google Scholar 

  • Magalhaes GO, Vacari AM, De Bortoli CP et al (2015) Interaction between Bacillus thuringiensis insecticides and Podisus nigrispinus (Hem.: Pentatomodae), a predator of Plutella xylostella (Lep.: Plutellidae). Neotrop Entomol 44(5):521–527

    Article  CAS  PubMed  Google Scholar 

  • Mahdavi TS, Madadi H, Biondi A (2020) Predation and reproduction of the generalist predator Nabis pseudoferus preying on Tuta absoluta. Entomol Exp Appl 168(10):732–741

    Article  Google Scholar 

  • Mahmoud BA (1992) The role of some Spodoptera littoralis parasitoids and predators as distributers of bacterial and viral insecticides. M.Sc. thesis, Fac. Agric., Cairo University, p 105

    Google Scholar 

  • Marquereau L, Cottineau JS, Fontaine O et al (2022) Life history parameters and predation capacities of Nesidiocoris volucer: a new biological control agent for tomato crop. Bull Entomol Res 112:1–9. https://doi.org/10.1017/S0007485321001164

    Article  Google Scholar 

  • Melamed-Madjar V (1971) Bionomics and ecology of the Earwig Anisolabis (Euborellia) annulipes Luc. (Labiduridae-Dermaptera) in Israel 1. Z Angew Entomol 69(1–4):170–176

    Article  Google Scholar 

  • Mohammadpour M, Hosseini M, Michaud JP et al (2020) The life history of Nabis pseudoferus feeding on Tuta absoluta eggs is mediated by egg age and parasitism status. Biol Control 151:104–401

    Article  Google Scholar 

  • Mojib-Haghghadam Z, Sendi JJ, Zibaee A et al (2018) Suitability of Aphis gossypii Glover, Aphis fabae Scop. and Ephestia kuehniella Zeller eggs for the biology and life-table parameters of Adalia decempunctata (L.) (Coleoptera: Coccinellidae). Arch Biol Sci 70(4):737–747

    Article  Google Scholar 

  • Mounika K, Gosalwad SS, Neharkar PS (2021) Biology of Chrysoperla zastrowi sillemi (Esben-Petersen) on different hosts. Pharm Innov J 10(8):671–674

    Google Scholar 

  • Myers JG (1925) Biological notes on Arachnocoris albomaculatus Scott (Hemiptera; Nabidae). J N Y Entomol Soc 33(3):136–146

    Google Scholar 

  • Nandan N, Korat DM, Dabhi MR (2014) Influence of different host insects (prey) on biological parameters of Chrysoperla zastrowisillemi (Esben-Peterson). Insect Environ 20(2):40–44

    Google Scholar 

  • Naruka P, Ameta OP (2015) Biology of Chrysoperla zastrowi arabica on different prey. Indian J Appl Entomol 29(1):61–65

    Google Scholar 

  • Neiswander RB (1944) Insect pests of strawberries in Ohio. Bulletin. Ohio Agricultural Experiment Station, Wooster, p 651

    Google Scholar 

  • New TR (2004) Insecta: Neuropteroidea. Freshwater invertebrates of the Malaysian Region. Academy of Sciences Malaysia, Kuala Lumpur, pp 491–500

    Google Scholar 

  • Ngoc Bao Chau N, Quynh Phuong Anh N, Le Nhu TT et al (2021) Ant and silkworm pupae as convenient diets for the development and reproduction of big-eyed bug Geocoris ochropterus, vol 24. Geocoridae, Hemiptera, p 131

    Google Scholar 

  • Nunes GDS, Dantas TAV, Figueiredo WRS et al (2022) The life history of Euborellia annulipes (Lucas). (Dermaptera: Anisolabididae) fed on larvae and pupae of Plutella xylostella (L.) (Lepidoptera: Plutellidae). Turk J Zool 46(2):175–185

    Article  Google Scholar 

  • Okude G, Fukatsu T, Futahashi R (2021) Comprehensive comparative morphology and developmental staging of final instar larvae toward metamorphosis in the insect order Odonata. Sci Rep 11:5164. https://doi.org/10.1038/s41598-021-84639-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paleari LM (2013) Developmental biology, polymorphism and ecological aspects of Stiretrus decemguttatus (Hemiptera, Pentatomidae), an important predator of cassidine beetles. Revista Brasileira de Entomologia 57(1):75–83

    Article  Google Scholar 

  • PDBC (1998) Annual report, 1997-98. Project Directorate of Biological Control. ICAR, Bangalore, p 217

    Google Scholar 

  • Perkins PV, Watson TF (1972) Biology of Nabis alternatus (Hemiptera: Nabidae). Ann Entomol Soc Am 65(1):54–57

    Article  Google Scholar 

  • Peterson A (1960) Larvae of insects. An introduction to nearctic species. Part II. Columbus, Ohio, p 416

    Google Scholar 

  • Pu D, Zheng Z, Liu H et al (2019) Development and reproduction of the hover fly Eupeodes corollae (Diptera: Syrphidae). J Earth Sci Environ Stud 4:654–660

    Google Scholar 

  • Putra NS, Yasuda H (2006) Effects of prey species and its density on larval performance of two species of hover fly larvae, Episyrphus balteatus de Geer and Eupeodes corollae Fabricius (Diptera: Syrphidae). Appl Entomol Zool 41:389–397

    Article  Google Scholar 

  • Rajan SL, Sree Latha E, Sathish R (2018) Biology of big-eyed bug, Geocoris erythrocephalus (Lepeletier & Serville) on cabbage aphid, Brevicoryne brassicae (L.). Int J Curr Microbiol App Sci 7(7):3301–3305

    Article  Google Scholar 

  • Ramirez R, Patterson R, Carbon C (2011) Beneficial true bugs: big-eyed bugs. Utah State University Extension and Utah Plant Pest Diagnostic Laboratory, ENT-159-11PR

    Google Scholar 

  • Rankin SM, Palmer JO, Larocque L et al (1995) Life history characteristics of ringlegged earwig (Dermaptera: Labiduridae): emphasis on ovarian development. Ann Entomol Soc Am 88(6):887–893

    Article  Google Scholar 

  • Rustam R, Gani MA (2019) Biology of Eocanthecona furcellata (Wolff) (Hemiptera: Pentatomidae) Predator Nettle Caterpillar Setora nitens Walker Origin from Riau. In: IOP conference series: earth and environmental science, vol 347, no 1. IOP Publishing, p 012009

    Google Scholar 

  • Sahid A, Natawigena WD (2018) Laboratory rearing of Sycanus annulicornis (Hemiptera: Reduviidae) on two species of prey: differences in its biology and efficiency as a predator of the nettle caterpillar pest Setothosea asigna (Lepidoptera: Limacodidae). Eur J Entomol 115:208–216

    Article  Google Scholar 

  • Salcedo C, Iannacone J, Alvariño L (2020) Ciclo biológico de Nabis consimilis Reuter, 1912 (Heteroptera: Nabidae) bajo condiciones de laboratorio. Revista Electrónica de Divulgación de Metodologías emergentes en el desarrollo de las STEM 2(2):3–21

    Google Scholar 

  • Sahayaraj K, Ambrose DP (1993) Biology and predatory potential of Coranus nodulosus Ambrose & Sahayaraj on Dysdercus cingulatus Fab. and Oxycarenus hyalinipennis Costa(Heteroptera: Reduviidae). Hexapoda 5:16–22

    Google Scholar 

  • Shahayaraj K, Sathiamoorthi P (2002) Influence of different diets of Corcyra cephalonica on life history of a reduviid predator Rhynocoris marginatus (Fab.). J Cent Eur Agric 3(1):53–62

    Google Scholar 

  • Siddique AB, Chapman RB (1987) Effect of prey type and quantity on the reproduction, development, and survival of Pacific damsel bug, Nabis kinbergii Reuter (Hemiptera: Nabidae). N Z J Zool 14(3):343–349

    Article  Google Scholar 

  • Simonato J, de Oliveira HN, Grigolli JF (2020) Potential of predator Podisus nigrispinus Dallas (Hemiptera: Pentatomidae) in the control of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Embrapa Agropecuária Oeste-Artigo em periódico indexado (ALICE) 12:204

    Google Scholar 

  • Singh P, Thakur M, Sharma KC et al (2020) Larval feeding capacity and pollination efficiency of the aphidophagous syrphids, Eupeodes frequens (Matsmura) and Episyrphus balteatus (De Geer) (Diptera: Syrphidae) on the cabbage aphid (Brevicoryne brassicae L.) (Homoptera: Aphididae) on mustard crop. Egypt J Biol Pest Control 30:105. https://doi.org/10.1186/s41938-020-00300-6

    Article  Google Scholar 

  • Sravika A, Shylesha AN, Jagadeesh KS (2020) Biology and potential of pentatomid predator, Eocanthecona furcellata (Wolff) (Hemiptera: Pentatomidae) on fall armyworm, Spodoptera frugiperda (Smith). J Biol Control 34(1):26–29

    Article  Google Scholar 

  • Srikumar KK, Bhat PS, Raviprasad TN et al (2014) Biology, behaviour, and functional response of Cydnocoris gilvus Brum. (Heteroptera: Reduviidae: Harpactorinae) a predator of tea mosquito bug (Helopeltis antonii Sign.) on cashew in India. J Threat Taxa 6(6):5864–5870

    Article  Google Scholar 

  • Sunil J, Chandish RB (2013) Syrphid predators for biological control of aphids. J Biol Control 27(3):151–170

    Google Scholar 

  • Tenhumberg B, Poehling HM (1995) Syrphids as natural enemies of cereal aphids in Germany: aspects of their biology and efficacy in different years and regions. Agric Ecosyst Environ 52(1):39–43

    Article  Google Scholar 

  • Toft S, Wise DH (1999) Growth, development, and survival of a generalist predator fed single- and mixed-species diets of different quality. Oecologia 119(2):191–197

    Article  PubMed  Google Scholar 

  • Torres JB, Silva-Torres CS, Ruberson JR (2004) Effect of two prey types on life-history characteristics and predation rate of Geocoris floridanus (Heteroptera: Geocoridae). Environ Entomol 33(4):964–974

    Article  Google Scholar 

  • Tourneur JC, Cole C, Meunier J (2020) The first of five moults of Forficula auricularia L. (Dermaptera: Forficulidae). Can Entomol 152(6):783–789

    Article  Google Scholar 

  • Truong XL, Pham HP, Thai TNL (2020) Biology and predatory ability of the reduviid Sycanus falleni Stal (Heteroptera: Reduviidae: Harpactorinae) fed on four different preys in laboratory conditions. J Asia Pac Entomol 23(4):1188–1193

    Article  Google Scholar 

  • Vahmani A, Shirvani A, Rashki M (2022) Biological parameters of Oenopia conglobata (Linnaeus) (Coleoptera: Coccinellidae) feeding on different diets. Int J Trop Insect Sci 42:2241

    Article  Google Scholar 

  • Varshney R, Ballal CR (2017) Biology and feeding potential of Geocoris superbus Montandon (Heteroptera: Geocoridae), a predator of mealybug. J Entomol Zool Stud 5(3):520–524

    Google Scholar 

  • Vennison SJ (1989) Bioecology, ecophysiology and ethology of chosen assassin bugs. Ph.D thesis, Madurai Kamaraj University, Madurai

    Google Scholar 

  • Vennison SJ, Ambrose DP (1986) Bioecology of a dimorphic assassin bug, Edocla slateri Distant (Heteroptera: Reduviidae). Entomon 11(4):255–258

    Google Scholar 

  • Vennison SJ, Ambrose DP (1990) Biology and behaviour of Sphedanolestes signatus Distant (Insecta: Heteroptera: Reduviidae) a potential predator of Helopeltis antonii Signoret. Uttar Pradesh J Zoology 10(1):30–43

    Google Scholar 

  • Vennison SJ, Ambrose DP (1991) Biology and behavior of Ectomocoris xaviereii Vennison & Ambrose 1990 (Heteroptera Reduviidae Piratinae). Trop Zool 4(2):251–258

    Article  Google Scholar 

  • Vennison SJ, Ambrose DP (1992) Biology, behaviour and biocontrol efficiency of a Reduviid predator, Sycanus reclinatus Dohrn (Heteroptera: Reduviidae) from southern India. Mitteilungen aus dem Museum für Naturkunde in Berlin. Zoologisches Museum und Institut für Spezielle Zoologie (Berlin) 68(1):143–156

    Article  Google Scholar 

  • Verma JS, Sharma KC, Sood A et al (2005) Biology and predatory potential of syrphid predators on Aphis fabae infesting Solanum nugrum (L.). J Entomol Res 29:39–41

    Google Scholar 

  • Vivek S, Paul B, Pandi GGP et al (2013) Biology and predatory potential of green lacewing, Chrysoperla sp. (carnea-group) on different aphid species. Ann Plant Prot Sci 21(1):9–12

    Google Scholar 

  • Wheeler AG Jr, Stinner BR, Henry TJ (1975) Biology and nymphal stages of Deraeocoris nebulosus (Hemiptera: Miridae), a predator of arthropod pests on ornamentals. Ann Entomol Soc Am 68(6):1063–1068

    Article  Google Scholar 

  • Zhang M, Ma Y, Luo J et al (2022) Transgenic insect-resistant Bt cotton expressing Cry1Ac/1Ab does not harm the insect predator Geocoris pallidipennis. Ecotoxicol Environ Saf 230:113129

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Liu H, Wang X et al (2019) Development and reproduction of the hoverfly Eupeodes corollae (Diptera: Syrphidae). J Earth Sci Environ Stud 4(4):654–660

    Google Scholar 

  • Zulkefli M, Norman K, Basri MW (2004) Life cycle of Sycanus dichotomus (Hemiptera: Pentatomidae) a common predator of bagworm in oil palm. J Oil Palm Res 14:50–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahayaraj, K., Hassan, E. (2023). Insect Predators Immature Stages Biology. In: Worldwide Predatory Insects in Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-99-1000-7_6

Download citation

Publish with us

Policies and ethics

Navigation