Microplastics in the Freshwater and Earthbound Conditions: Prevalence, Destinies, Impacts, and Supportable Arrangements

  • Chapter
  • First Online:
Microplastic sources, fate and solution
  • 302 Accesses

Abstract

An increasing number of researches have been published on MPs’ different freshwater ecosystems worldwide, including lakes, rivers, estuaries, and wetlands in both waters and sediments. Although the literature on plastics in freshwater is growing, data are globally disjointed about the evidence of concentrations of MPs and impacts on environmental freshwater matrices (Cera et al. 2020). Besides, the heterogeneity of sampling protocols, methodologies, techniques, and measurement units among different researches makes it challenging to compare results and produce a complete picture of the existing state of understanding [1]. Another critical factor is that MPs < 100 μm (SMPs) are often overlooked; less than 20% of reported studies on freshwater environments reported MPs below 20 μm. The sampling and analytical procedures are strictly connected to detecting plastic particles sizes >100 μm. Consequently, most of the reported studies could have undervalued the concentration of SMPs. Thus, improvement in detection technologies and pre-treatments methods could modify the final mean amount of MPs in freshwater environments [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cera A, Cesarini G, Scalici M (2020) Microplastics in freshwater: what is the news from the world? Diversity 12(7):276. https://doi.org/10.3390/d12070276

    Article  CAS  Google Scholar 

  2. Lu C, Di W, Peng L, Wenyou H, Li X, Yicheng S, Qiumei W, Kang T, Biao H, Seo Joon Y, Bong-Oh K, Jong Seong K (2021) Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China. Sci Total Environ 794:148694. https://doi.org/10.1016/j.scitotenv.2021.148694

    Article  CAS  Google Scholar 

  3. Koutnik VS, Leonard J, Alkidim S et al (2021) Distribution of microplastics in soil and freshwater environments: global analysis and framework for transport modeling. Environ Pollut 274:116552

    Article  CAS  PubMed  Google Scholar 

  4. Gallagher A, Rees A, Rowe R, Stevens J, Wright P (2016) Microplastics in the Solent estuarine complex, UK: an initial assessment. Mar Pollut Bull 102(2):243–249. https://doi.org/10.1016/j.marpolbul.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  5. Li J, Song Y, Cai Y (2020) Focus topics on microplastics in soil: analytical methods, occurrence, transport, and ecological risks. Environ Pollut 257:113570. https://doi.org/10.1016/j.envpol.2019.113570

    Article  CAS  PubMed  Google Scholar 

  6. Szymańska M, Obolewski K (2020) Microplastics as contaminants in freshwater environments: a multidisciplinary review. Ecohydrol Hydrobiol 20(3):333–345. https://doi.org/10.1016/j.ecohyd.2020.05.001

    Article  Google Scholar 

  7. Yao L, Hui L, Yang Z, Chen X, **ao A (2020) Freshwater microplastics pollution: detecting and visualizing emerging trends based on Citespace II. Chemosphere 245:125627. https://doi.org/10.1016/j.chemosphere.2019.125627. Epub 2019 Dec 11

    Article  CAS  PubMed  Google Scholar 

  8. Rasta M, Sattari M, Taleshi MS, Namin JI (2020) Identification and distribution of microplastics in the sediments and surface waters of Anzali Wetland in the Southwest Caspian Sea, Northern Iran. Mar Pollut Bull 160:111541. https://doi.org/10.1016/j.marpolbul.2020.111541

    Article  CAS  PubMed  Google Scholar 

  9. Lebreton LC, Van Der Zwet J, Damsteeg JW, Slat B, Andrady A, Reisser J (2017) River plastic emissions to the world’s oceans. Nat Commun 8(1):15611. https://doi.org/10.1038/ncomms15611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alimi OS, Farner Budarz J, Hernandez LM, Tufenkji N (2018) Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol 52(4):1704–1724

    Article  CAS  PubMed  Google Scholar 

  11. Lechner A, Keckeis H, Lumesberger LF, Zens B, Krusch R, Tritthart M, Glas M, Schludermann E (2014) The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ Pollut 188:177–181. https://doi.org/10.1016/j.envpol.2014.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stanton T, Johnson M, Nathanail P, MacNaughtan W, Gomes Rachel L (2020) Freshwater microplastic concentrations vary through both space and time. Environ Pollut 263(Part B):114481. https://doi.org/10.1016/j.envpol.2020.114481

    Article  CAS  PubMed  Google Scholar 

  13. Leslie HA, Brandsma SH, van Velzena MJM, Vethaakab AD (2017) Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ Int 101:133–142. https://doi.org/10.1016/j.envint.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  14. Fu Z, Wang J (2019) Current practices and future perspectives of microplastic pollution in freshwater ecosystems in China. Sci Total Environ 691:697–712. https://doi.org/10.1016/j.scitotenv.2019.07.167. Epub 2019

    Article  CAS  PubMed  Google Scholar 

  15. Zhao S, Zhu L, Wang T, Li D (2014) Suspended microplastics in the surface water of the Yangtze estuary system, China: first observations on occurrence, distribution. Mar Pollut Bull 86:562–568

    Article  CAS  PubMed  Google Scholar 

  16. Fok L, Cheung P (2015) Hong Kong at the Pearl River estuary: a hotspot of microplastic pollution. Mar Pollut Bull 99:112–118

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, **e Y, Zhong S, Liu J, Qin Y, Gao P (2021) Microplastics in freshwater and wild fishes from Lijiang River in Guangxi, Southwest China. Sci Total Environ 755:142428. https://doi.org/10.1016/j.scitotenv.2020.142428

    Article  CAS  PubMed  Google Scholar 

  18. Long Z, Pan Z, Wang W, Ren J, Yu X, Lin L, Lin H, Chen H, ** X (2019) Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Res 155:255–265. https://doi.org/10.1016/j.watres.2019.02.028

    Article  CAS  PubMed  Google Scholar 

  19. Said L, Heard MJ (2020) Variation in the presence and abundance of anthropogenic microfibers in the Cumberland River in Nashville, TN, USA. Environ Sci Pollut Res 27:10135–10139. https://doi.org/10.1007/s11356-020-08091-x

    Article  Google Scholar 

  20. Leads RR, Weinstein JE (2019) Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor Estuary, South Carolina, USA. Mar Pollut Bull 145:569–582. https://doi.org/10.1016/j.marpolbul.2019.06.061

    Article  CAS  PubMed  Google Scholar 

  21. Napper IE, Baroth A, Barrett AC, Bhola S, Chowdhury GW, Davies Bede FR, Duncan EM, Kumar S, Nelms SE, Niloy MN, Hasan NB, Maddalene T, Thompson RC, Koldewey H (2021) The abundance and characteristics of microplastics in surface water in the transboundary Ganges River. Environ Pollut 274:116348. https://doi.org/10.1016/j.envpol.2020.116348

    Article  CAS  PubMed  Google Scholar 

  22. Rech S, Macaya-Caquilpán V, Pantoja JF, Rivadeneira MM, Compodonico CK, Thiel M (2015) Sampling of riverine litter with citizen scientists — findings and recommendations. Environ Monit Assess 187:335. https://doi.org/10.1007/s10661-015-4473-y

    Article  CAS  PubMed  Google Scholar 

  23. Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Úbeda B, Hernández-León S, Palma AT, Navarro S, Garcia-de-Lomas J, Ruiz A, Fernandez-de-Puelles ML, Duarte CM (2014) Plastic debris in the open ocean. Proc Natl Acad Sci U S A 111(28):10239–10244. https://doi.org/10.1073/pnas.1314705111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scherer C, Weber A, Lambert S, Wagner M (2018) Interactions of microplastics with freshwater biota. In: Freshwater microplastics. The handbook of environmental chemistry, vol 58. Springer, pp 153–180

    Chapter  Google Scholar 

  25. Scherer C, Wolf R, Völker J et al (2020) Toxicity of microplastics and natural particles in the freshwater dipteran Chironomus riparius: same same but different? Sci Total Environ 711:134604. https://doi.org/10.1016/j.scitotenv.2019.134604

    Article  CAS  PubMed  Google Scholar 

  26. Klein S, Worch E, Knepper TP (2015) Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environ Sci Technol 49(10):6070–6076

    Article  CAS  PubMed  Google Scholar 

  27. Mani T, Burkhardt-Holm P (2020) Seasonal microplastics variation in nival and pluvial stretches of the Rhine River–from the Swiss catchment towards the North Sea. Sci Total Environ 707:135579

    Article  CAS  PubMed  Google Scholar 

  28. Kiss T, Fórián S, Szatmári G, Sipos G (2021) Spatial distribution of microplastics in the fluvial sediments of a transboundary river – a case study of the Tisza River in Central Europe. Sci Total Environ 785:147306. https://doi.org/10.1016/j.scitotenv.2021.147306

    Article  CAS  PubMed  Google Scholar 

  29. Blair RM, Waldron S, Phoenix VR et al (2019) Microscopy and elemental analysis characterisation of microplastics in sediment of a freshwater urban river in Scotland, UK. Environ Sci Pollut Res 26:12491–12504. https://doi.org/10.1007/s11356-019-04678-1

    Article  Google Scholar 

  30. Eriksen M, Mason S, Wilson S, Box C, Zellers A, Edwards W, Farley H, Amato S (2013) Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull 77:177–182. https://doi.org/10.1016/j.marpolbul.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  31. Zbyszewski M, Corcoran PL (2011) Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water Air Soil Pollut 220:365–372. https://doi.org/10.1007/s11270-011-0760-6

    Article  CAS  Google Scholar 

  32. Ballent A, Corcoran PL, Odile M, Helm PA, Longstaffe FJ (2016) Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Mar Pollut Bull 110(1):383–395. https://doi.org/10.1016/j.marpolbul.2016.06.037

    Article  CAS  PubMed  Google Scholar 

  33. Lenaker PL, Corsi SR, Mason SA (2020) Spatial distribution of microplastics in surficial benthic sediment of Lake Michigan and Lake Erie. Environ Sci Technol 55(1):373–384. https://doi.org/10.1021/acs.est.0c06087

    Article  CAS  PubMed  Google Scholar 

  34. Baldwin AK, Spanjer AR, Rosen MR, Thom T (2020) Microplastics in Lake Mead National Recreation Area, USA: occurrence and biological uptake. PLoS One 15(5):e0228896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fischer EK, Paglialonga L, Czech E, Tamminga M (2016) Microplastic pollution in lakes and lake shoreline sediments – a case study on Lake Bolsena and Lake Chiusi (central Italy). Environ Pollut 213:648–657. https://doi.org/10.1016/j.envpol.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  36. Scopetani C, Chelazzi D, Cincinelli A, Esterhuizen-Londt M (2019) Assessment of microplastic pollution: occurrence and characterisation in Vesijärvi lake and Pikku Vesijärvi pond, Finland. Environ Monit Assess 191(11):652. https://doi.org/10.1016/j.etap.2019.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mehdinia A, Dehbandi R, Hamzehpour A, Rahnama R (2020) Identification of microplastics in the sediments of southern coasts of the Caspian Sea, north of Iran. Environ Pollut 258:113738. https://doi.org/10.1016/j.envpol.2019.113738

    Article  CAS  PubMed  Google Scholar 

  38. Zobkov M, Belkina N, Kovalevski V, Zobkova M, Efremova T, Galakhina N (2020) Microplastic abundance and accumulation behavior in Lake Onego sediments: a journey from the river mouth to pelagic waters of the large boreal lake. J Environ Chem Eng 8(5):104367. https://doi.org/10.1016/j.jece.2020.104367

    Article  CAS  Google Scholar 

  39. Yuan W, Liu X, Wang W, Di M, Wang J (2019) Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicol Environ Saf 170:180–187. https://doi.org/10.1016/j.ecoenv.2018.11.126

    Article  CAS  PubMed  Google Scholar 

  40. **ong X, Zhang K, Chen X, Shi H, Luo Z, Wu C (2018) Sources and distribution of microplastics in China’s largest inland lake–Qinghai Lake. Environ Pollut 235:899–906. https://doi.org/10.1016/j.envpol.2017.12.081

    Article  CAS  PubMed  Google Scholar 

  41. Mao R, Song J, Yan P, Ouyang Z, Wu R, Liu S, Guo X (2021) Horizontal and vertical distribution of microplastics in the Wuliangsuhai Lake sediment, northern China. Sci Total Environ 754:142426. https://doi.org/10.1016/j.scitotenv.2020.142426

    Article  CAS  PubMed  Google Scholar 

  42. Qin Y, Wang Z, Li W, Chang X, Yang J, Yang F (2019) Microplastics in the sediment of Lake Ulansuhai of Yellow River Basin, China. Water Environ Res 92(6):829–839. https://doi.org/10.1002/wer.1275

    Article  CAS  PubMed  Google Scholar 

  43. Yin L, Wen X, Du C, Jiang J, Wu L, Zhang Y et al (2020) Comparison of the abundance of microplastics between rural and urban areas: a case study from East Dongting Lake. Chemosphere 244:125486. https://doi.org/10.1016/j.scitotenv.2016.03.053

    Article  CAS  PubMed  Google Scholar 

  44. Negrete Velasco ADJ, Rard L, Blois W, Lebrun D, Lebrun F, Pothe F, Stoll S (2020) Microplastic and fibre contamination in a remote mountain lake in Switzerland. Water 12(9):2410. https://doi.org/10.3390/w12092410

    Article  CAS  Google Scholar 

  45. Zhang K, Su J, **ong X, Wu X, Wu C, Liu J (2016) Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environ Pollut 219:450–455. https://doi.org/10.1016/j.envpol.2016.05.048

    Article  CAS  PubMed  Google Scholar 

  46. Free CM, Jensen OP, Mason SA, Eriksen M, Williamson NJ, Boldgiv B (2014) High-levels of microplastic pollution in a large, remote, mountain lake. Mar Pollut Bull 85(1):156–163. https://doi.org/10.1016/j.marpolbul.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  47. Townsend KR, Lu HC, Sharley DJ, Pettigrove V (2019) Associations between microplastic pollution and land use in urban wetland sediments. Environ Sci Pollut Res 26:22551–22561. https://doi.org/10.1007/s11356-019-04885-w

    Article  Google Scholar 

  48. Triebskorn R, Braunbeck T, Grummt T, Hanslik L, Huppertsberg S, Jekel M, Knepper TP, Krais S, Müller YK, Pittroff M, Ruhl AS, Schmieg H, Schür C, Strobel C, Wagner M, Zumbülte N, Köhler H (2019) Relevance of nano- and microplastics for freshwater ecosystems: a critical review. TrAC Trends Anal Chem 110:375–392. https://doi.org/10.1016/j.trac.2018.11.023

    Article  CAS  Google Scholar 

  49. Lin L, Pan X, Zhang S, Li D, Zhai W, Wang Z et al (2021) Distribution and source of microplastics in China’s second largest reservoir-Danjiangkou Reservoir. J Environ Sci 102:74–84. https://doi.org/10.1016/j.jes.2020.09.018

    Article  CAS  Google Scholar 

  50. Liu K, Zhang F, Song Z, Zong C, Wei N, Li D (2019) A novel method enabling the accurate quantification of microplastics in the water column of deep ocean. Mar Pollut Bull 146:462–465. https://doi.org/10.1016/j.marpolbul.2019.07.008

    Article  CAS  PubMed  Google Scholar 

  51. Olesen KB, Stephansen DA, van Alst N, Vollertsen J (2019) Microplastics in a stormwater pond. Water 11:1466. https://doi.org/10.3390/w11071466

    Article  CAS  Google Scholar 

  52. Ziajahromi S, Neale PA, Telles Silveira I, Chua A, Leusch FDL (2021) An audit of microplastic abundance throughout three Australian wastewater treatment plants. Chemosphere 263:128294. https://doi.org/10.1016/j.chemosphere.2020.128294

    Article  CAS  PubMed  Google Scholar 

  53. Knight LJ, Parker-Jurd FNF, Al-Sid-Cheikh M, Thompson RC (2020) Tyre wear particles: an abundant yet widely unreported microplastic? Environ Sci Pollut Res 27:18345–18354. https://doi.org/10.1007/s11356-020-08187-4

    Article  CAS  Google Scholar 

  54. Guo J-J, Huang X-P, **ang L, Wang Y-Z, Li Y-W, Li H, Cai Q-Y, Mo C-H, Wong M-H (2020) Source, migration and toxicology of microplastics in soil. Environ Int 137:105263. https://doi.org/10.1016/j.envint.2019.105263

    Article  CAS  PubMed  Google Scholar 

  55. Rafique A, Irfan M, Mumtaz M et al (2020) Spatial distribution of microplastics in soil with context to human activities: a case study from the urban center. Environ Monit Assess 192:671. https://doi.org/10.1007/s10661-020-08641-3

    Article  CAS  PubMed  Google Scholar 

  56. Fuller S, Gautam AA (2020) Procedure for measuring microplastics using pressurized fluid extraction. Environ Sci Technol 11(2016):5774–5780. https://doi.org/10.1021/acs.est.6b00816

    Article  CAS  Google Scholar 

  57. Bläsing M, Amelung W (2018) Plastics in soil: analytical methods and possible sources. Sci Total Environ 612(2018):422–435. https://doi.org/10.1016/j.scitotenv.2017.08.086

    Article  CAS  PubMed  Google Scholar 

  58. Zhang GS, Liu YF (2018) The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ 642:12–20. https://doi.org/10.1016/j.scitotenv.2018.06.004. Epub 2018 Jun 9

    Article  CAS  PubMed  Google Scholar 

  59. Kumar M, **ong X, He M, Tsang Daniel CW, Gupta J, Khan E, Harrad S, Hou D, Ok YS, Bolan NS (2020) Microplastics as pollutants in agricultural soils. Environ Pollut 265(Part A):114980. https://doi.org/10.1016/j.envpol.2020.114980

    Article  CAS  PubMed  Google Scholar 

  60. Talvitie J, Mikola A, Setala O, Heinonen M, Koistinen A (2017) How well is microlitter purified from wastewater? A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Res 109:164–172. https://doi.org/10.1016/j.watres.2016.11.046

    Article  CAS  PubMed  Google Scholar 

  61. van den Berg P, Huerta-Lwanga E, Corradini F, Geissen V (2020) Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environ Pollut 261:114198. https://doi.org/10.1016/j.envpol.2020.114198

    Article  CAS  PubMed  Google Scholar 

  62. Zubris KAV, Richards BK (2005) Synthetic fibers as an indicator of land application of sludge. Environ Pollut 138(2):201–211. https://doi.org/10.1016/j.envpol.2005.04.013

    Article  CAS  PubMed  Google Scholar 

  63. Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, Geissen V (2019) Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci Total Environ 671:411–420. https://doi.org/10.1016/j.scitotenv.2019.03.368

    Article  CAS  PubMed  Google Scholar 

  64. Gui J, Sun Y, Wang J, Chen X, Zhang S, Wu D (2021) Microplastics in composting of rural domestic waste: abundance, characteristics, and release from the surface of macroplastics. Environ Pollut 274:116553. https://doi.org/10.1016/j.envpol.2021.116553

    Article  CAS  PubMed  Google Scholar 

  65. Weithmann N, Möller JN, Löder MGJ, Piehl S, Laforsch C, Freitag R (2018) Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv 4:8060. https://doi.org/10.1126/sciadv.aap8060

    Article  CAS  Google Scholar 

  66. Kilponen J (2016) Microplastics and harmful substances in urban runoffs and landfill leachates: possible emission sources to marine environment, Finnish Environment Institute. Lahti Univ Appl Sci

    Google Scholar 

  67. Su Y, Zhang Zhongjian W, Dong ZL, Shi H, **e B (2019) Occurrence of microplastics in landfill systems and their fate with landfill age. Water Res 164:114968. https://doi.org/10.1016/j.watres.2019.114968

    Article  CAS  PubMed  Google Scholar 

  68. He P, Chen L, Shao L, Zhang H, Lü F (2019) Municipal solid waste (MSW) landfill: a source of microplastics? – Evidence of microplastics in landfill leachate. Water Res 159:38–45. https://doi.org/10.1016/j.watres.2019.04.060

    Article  CAS  PubMed  Google Scholar 

  69. Lares M, Ncibi MC, Sillanpää M, Sillanpää M (2018) Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res 133:236–246. https://doi.org/10.1016/j.watres.2018.01.049

    Article  CAS  PubMed  Google Scholar 

  70. Tibbetts J, Krause S, Lynch I, Smith GHS (2018) Abundance, distribution, and drivers of microplastic contamination in urban river environments. Water 1597(10):1597. https://doi.org/10.3390/W10111597

    Article  Google Scholar 

  71. Koelmans AA, Quik JTK, Velzeboer I (2015) Lake retention of manufactured nanoparticles. Environ Pollut 196:171–175. https://doi.org/10.1016/j.envpol.2014.09.025

    Article  CAS  PubMed  Google Scholar 

  72. Kooi M, Besseling E, Kroeze C et al (2018) Modeling the fate and transport of plastic debris in freshwaters: review and guidance. In: Handbook of environmental chemistry. Springer, pp 125–152

    Google Scholar 

  73. Qu HJ, Kroeze C (2011) Nutrient export by rivers to the coastal waters of China: management strategies and future trends. Reg Environ Chang 121(12):153–167. https://doi.org/10.1007/S10113-011-0248-3

    Article  Google Scholar 

  74. Carr SA, Liu J, Tesoro AG (2016) Transport and fate of microplastic particles in wastewater treatment plants. Water Res 91:174–182. https://doi.org/10.1016/j.watres.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  75. Rochman CM (2018) Microplastics research — from sink to source in freshwater systems. Science 360:28–29

    Article  CAS  PubMed  Google Scholar 

  76. Sanchez C (2020) Fungal potential for the degradation of petroleum-based polymers: an overview of macro- and microplastics biodegradation. Biotechnol Adv 40:107501. https://doi.org/10.1016/j.biotechadv.2019.107501

    Article  CAS  PubMed  Google Scholar 

  77. Rillig MC, Ingraffia R, De Souza Machado AA (2017) Microplastic incorporation into soil in agroecosystems. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01805

  78. Huerta Lwanga E, Gertsen H, Gooren H et al (2016) Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol 50:2685–2691. https://doi.org/10.1021/acs.est.5b05478

    Article  CAS  PubMed  Google Scholar 

  79. Rillig MC, Ziersch L, Hempel S (2017) Microplastic transport in soil by earthworms. Sci Rep 7. https://doi.org/10.1038/s41598-017-01594-7

  80. Horton AA, Walton A, Spurgeon DJ et al (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141

    Article  CAS  PubMed  Google Scholar 

  81. Wang C, Zhao J, **ng B (2021) Environmental source, fate, and toxicity of microplastics. J Hazard Mater 407:124357

    Article  CAS  PubMed  Google Scholar 

  82. O’Connor D, Pan S, Shen Z et al (2019) Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environ Pollut 249:527–534. https://doi.org/10.1016/j.envpol.2019.03.092

    Article  CAS  PubMed  Google Scholar 

  83. Liu G, Jiang R, You J et al (2020) Microplastic impacts on microalgae growth: effects of size and humic acid. Environ Sci Technol 54:1782–1789. https://doi.org/10.1021/acs.est.9b06187

    Article  CAS  PubMed  Google Scholar 

  84. Sjollema SB, Redondo-Hasselerharm P, Leslie HA et al (2016) Do plastic particles affect microalgal photosynthesis and growth? Aquat Toxicol 170:259–261. https://doi.org/10.1016/j.aquatox.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  85. Brennecke D, Duarte B, Paiva F et al (2016) Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 178:189–195. https://doi.org/10.1016/j.ecss.2015.12.003

    Article  CAS  Google Scholar 

  86. Harrison JP, Schratzberger M, Sapp M, Osborn AM (2014) Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol 14:1–15. https://doi.org/10.1186/s12866-014-0232-4

    Article  CAS  Google Scholar 

  87. Baho DL, Bundschuh M, Futter MN (2021) Microplastics in terrestrial ecosystems: moving beyond the state of the art to minimize the risk of ecological surprise. Glob Chang Biol:1–18. https://doi.org/10.1111/gcb.15724

  88. de Souza Machado AA, Kloas W, Zarfl C et al (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24:1405–1416. https://doi.org/10.1111/gcb.14020

    Article  PubMed  PubMed Central  Google Scholar 

  89. Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82

    Article  CAS  PubMed  Google Scholar 

  90. Zhao S, Zhu L, Li D (2016) Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: not only plastics but also natural fibers. Sci Total Environ 550:1110–1115. https://doi.org/10.1016/j.scitotenv.2016.01.112

    Article  CAS  PubMed  Google Scholar 

  91. De Souza Machado AA, Lau CW, Kloas W et al (2019) Microplastics can change soil properties and affect plant performance. Environ Sci Technol 53:6044–6052. https://doi.org/10.1021/acs.est.9b01339

    Article  CAS  PubMed  Google Scholar 

  92. ** Y, Lu L, Tu W et al (2019) Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ 649:308–317. https://doi.org/10.1016/j.scitotenv.2018.08.353

    Article  CAS  PubMed  Google Scholar 

  93. Qi Y, Yang X, Pelaez AM et al (2018) Macro- and micro-plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056. https://doi.org/10.1016/j.scitotenv.2018.07.229

    Article  CAS  PubMed  Google Scholar 

  94. Laist DW (1996) Marine debris entanglement and ghost fishing: a cryptic and significant type of bycatch? In: Solving bycatch: consideration for today and tomorrow, pp 33–39

    Google Scholar 

  95. Ryan PG (2018) Entanglement of birds in plastics and other synthetic materials. Mar Pollut Bull 135:159–164. https://doi.org/10.1016/j.marpolbul.2018.06.057

    Article  CAS  PubMed  Google Scholar 

  96. Eriksson C, Burton H (2003) Origins and biological accumulation of small plastic particles in fur seals from Macquarie Island. AMBIO A J Hum Environ 32:380. https://doi.org/10.1639/0044-7447(2003)032[0380:oabaos]2.0.co;2

    Article  Google Scholar 

  97. Huerta Lwanga E, Mendoza Vega J, Ku Quej V et al (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 7. https://doi.org/10.1038/s41598-017-14588-2

  98. Au SY, Bruce TF, Bridges WC, Klaine SJ (2015) Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ Toxicol Chem 34(11):2564–2572. https://doi.org/10.1002/etc.3093

    Article  CAS  PubMed  Google Scholar 

  99. Ogonowski M, Schür C, Jarsén Å, Gorokhova E (2016) The effects of natural and anthropogenic microparticles on individual fitness in daphnia magna. PLoS One 11:155063. https://doi.org/10.1371/journal.pone.0155063

    Article  CAS  Google Scholar 

  100. Rehse S, Kloas W, Zarfl C (2016) Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 153:91–99. https://doi.org/10.1016/j.chemosphere.2016.02.133

    Article  CAS  PubMed  Google Scholar 

  101. Lu Y, Zhang Y, Deng Y et al (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ Sci Technol 50:4054–4060. https://doi.org/10.1021/acs.est.6b00183

    Article  CAS  PubMed  Google Scholar 

  102. Imhof HK, Laforsch C (2016) Hazardous or not – are adult and juvenile individuals of Potamopyrgus antipodarum affected by non-buoyant microplastic particles? Environ Pollut 218:383–391. https://doi.org/10.1016/j.envpol.2016.07.017

    Article  CAS  PubMed  Google Scholar 

  103. Weber A, Scherer C, Brennholt N et al (2018) PET microplastics do not negatively affect the survival, development, metabolism and feeding activity of the freshwater invertebrate Gammarus pulex. Environ Pollut 234:181–189. https://doi.org/10.1016/j.envpol.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  104. Lithner D, Larsson A, Dave G (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409:3309–3324. https://doi.org/10.1016/j.scitotenv.2011.04.038

    Article  CAS  PubMed  Google Scholar 

  105. Wang F, Wong CS, Chen D et al (2018) Interaction of toxic chemicals with microplastics: a critical review. Water Res 139:208–219

    Article  CAS  PubMed  Google Scholar 

  106. Bakir A, Rowland SJ, Thompson RC (2012) Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Mar Pollut Bull 64:2782–2789. https://doi.org/10.1016/j.marpolbul.2012.09.010

    Article  CAS  PubMed  Google Scholar 

  107. Bakir A, Rowland SJ, Thompson RC (2014) Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar Coast Shelf Sci 140:14–21. https://doi.org/10.1016/j.ecss.2014.01.004

    Article  CAS  Google Scholar 

  108. Hirai H, Takada H, Ogata Y et al (2011) Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull 62:1683–1692. https://doi.org/10.1016/j.marpolbul.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  109. Holmes LA, Turner A, Thompson RC (2014) Interactions between trace metals and plastic production pellets under estuarine conditions. Mar Chem 167:25–32. https://doi.org/10.1016/j.marchem.2014.06.001

    Article  CAS  Google Scholar 

  110. Oliveira M, Ribeiro A, Hylland K, Guilhermino L (2013) Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Ecol Indic 34:641–647. https://doi.org/10.1016/j.ecolind.2013.06.019

    Article  CAS  Google Scholar 

  111. Guilhermino L, Vieira LR, Ribeiro D et al (2018) Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea. Sci Total Environ 622–623:1131–1142. https://doi.org/10.1016/j.scitotenv.2017.12.020

    Article  CAS  PubMed  Google Scholar 

  112. Grigorakis S, Drouillard KG (2018) Effect of microplastic amendment to food on diet assimilation efficiencies of PCBs by fish. Environ Sci Technol 52:10796–10802. https://doi.org/10.1021/acs.est.8b02497

    Article  CAS  PubMed  Google Scholar 

  113. Rochman CM, Hoh E, Kurobe T, Teh SJ (2013) Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep 3:1–7. https://doi.org/10.1038/srep03263

    Article  Google Scholar 

  114. Karami A, Romano N, Galloway T, Hamzah H (2016) Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus). Environ Res 151:58–70. https://doi.org/10.1016/j.envres.2016.07.024

    Article  CAS  PubMed  Google Scholar 

  115. Kleinteich J, Seidensticker S, Marggrander N, Zarf C (2018) Microplastics reduce short-term effects of environmental contaminants. Part II: Polyethylene particles decrease the effect of polycyclic aromatic hydrocarbons on microorganisms. Int J Environ Res Public Health 15:287. https://doi.org/10.3390/ijerph15020287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gouin T, Roche N, Lohmann R, Hodges G (2011) A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ Sci Technol 45:1466–1472. https://doi.org/10.1021/es1032025

    Article  CAS  PubMed  Google Scholar 

  117. Koelmans AA, Besseling E, Wegner A, Foekema EM (2013) Plastic as a carrier of POPs to aquatic organisms: a model analysis. Environ Sci Technol 47:7812–7820. https://doi.org/10.1021/es401169n

    Article  CAS  PubMed  Google Scholar 

  118. Batel A, Borchert F, Reinwald H et al (2018) Microplastic accumulation patterns and transfer of benzo[a]pyrene to adult zebrafish (Danio rerio) gills and zebrafish embryos. Environ Pollut 235:918–930. https://doi.org/10.1016/j.envpol.2018.01.028

    Article  CAS  PubMed  Google Scholar 

  119. Hodson ME, Duffus-Hodson CA, Clark A et al (2017) Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ Sci Technol 51:4714–4721. https://doi.org/10.1021/ACS.EST.7B00635

    Article  CAS  PubMed  Google Scholar 

  120. Wang J, Coffin S, Sun C et al (2019) Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environ Pollut 249:776–784. https://doi.org/10.1016/J.ENVPOL.2019.03.102

    Article  CAS  PubMed  Google Scholar 

  121. Hüffer T, Metzelder F, Sigmund G et al (2019) Polyethylene microplastics influence the transport of organic contaminants in soil. Sci Total Environ 657:242–247. https://doi.org/10.1016/J.SCITOTENV.2018.12.047

    Article  PubMed  Google Scholar 

  122. Campanale C, Massarelli C, Savino I et al (2020) A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health 17. https://doi.org/10.3390/IJERPH17041212

  123. McCormick A, Hoellein TJ, Mason SA et al (2014) Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol 48:11863–11871. https://doi.org/10.1021/es503610r

    Article  CAS  PubMed  Google Scholar 

  124. Scherer C, Weber A, Stock F, Vurusic S, Egerci H, Kochleus C, Arendt N, Foeldi C, Dierkes G, Wagner M, Brennholt N, Reifferscheid G (2020) Comparative assessment of microplastics in water and sediment of a large European river. Sci Total Environ 738:139866. https://doi.org/10.1016/j.scitotenv.2020.139866

    Article  CAS  PubMed  Google Scholar 

  125. Li T-C, Yuan C-S, Hung C-H et al (2016) Chemical characteristics of marine fine aerosols over sea and at offshore islands during three cruise sampling campaigns in the Taiwan Strait – Sea Salts and Anthropogenic Particles. Atmos Chem Phys Discuss 1–27. https://doi.org/10.5194/acp-2016-384

  126. Jiang P, Zhao S, Zhu L, Li D (2018) Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Sci Total Environ 624:48–54. https://doi.org/10.1016/j.scitotenv.2017.12.105

    Article  CAS  PubMed  Google Scholar 

  127. Brennholt N, Heß M, Reifferscheid G (2018) Freshwater microplastics: challenges for regulation and management. In: Freshwater microplastics. The handbook of environmental chemistry, vol 58. Springer, pp 239–272

    Chapter  Google Scholar 

  128. Schmaltz E, Melvin EC, Diana Z et al (2020) Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution. Environ Int 144:106067

    Article  CAS  PubMed  Google Scholar 

  129. Ngo PL, Pramanik BK, Shah K, Roychand R (2019) Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environ Pollut 255:113326. https://doi.org/10.1016/j.envpol.2019.113326

    Article  CAS  PubMed  Google Scholar 

  130. Hu K, Tian W, Yang Y et al (2021) Microplastics remediation in aqueous systems: strategies and technologies. Water Res 198:117144. https://doi.org/10.1016/j.watres.2021.117144

    Article  CAS  PubMed  Google Scholar 

  131. Roager L, Sonnenschein EC (2019) Bacterial candidates for colonization and degradation of marine plastic debris. Environ Sci Technol 53:11636–11643. https://doi.org/10.1021/acs.est.9b02212

    Article  CAS  PubMed  Google Scholar 

  132. Muhonja CN, Makonde H, Magoma G, Imbuga M (2018) Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS One 13:e0198446

    Article  PubMed  PubMed Central  Google Scholar 

  133. Nanda S, Berruti F (2021) Thermochemical conversion of plastic waste to fuels: a review. Environ Chem Lett 19:123–148. https://doi.org/10.1007/s10311-020-01094-7

    Article  CAS  Google Scholar 

  134. Ward M (2013) Marine Microplastics Removal Tool Patent US8944253B2 US

    Google Scholar 

  135. Hoola One—We hand the beaches back to nature (n.d.) Hoola One. https://hoolaone.com. Accessed 18 Feb 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Corami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gregoris, E., Rosso, B., Roman, M., Corami, F. (2023). Microplastics in the Freshwater and Earthbound Conditions: Prevalence, Destinies, Impacts, and Supportable Arrangements. In: Khan, A., Wang, C., Asiri, A.M. (eds) Microplastic sources, fate and solution. Springer, Singapore. https://doi.org/10.1007/978-981-99-0695-6_2

Download citation

Publish with us

Policies and ethics

Navigation