Modelling Physical Systems with Cellular Automata

  • Conference paper
  • First Online:
Proceedings of Second Asian Symposium on Cellular Automata Technology (ASCAT 2023)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1443))

Included in the following conference series:

  • 103 Accesses

Abstract

Cellular automaton models provide simple minimal models to describe the salient features of many complex physical phenomena. In this article, I illustrate this with some examples: the sandpile model, Eulerian walkers model, and a model of fragmentation of ice sheet at termini of calving glaciers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://en.wikipedia.org/wiki/Cellular_automaton

  2. Bak, P., Tand, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the \(1/f\) nose. Phys. Rev. Lett. 59, 381 (1987)

    Article  Google Scholar 

  3. Dhar, D.: Theoretical studies of self-organized criticality. Phys. A 369, 29–70 (2006)

    Article  MathSciNet  Google Scholar 

  4. Priezzhev, V.B., Dhar, D., Dhar, A., Krishnamurthy, S.: Eulerian Walkers as a model of self-organized criticality. Phys. Rev. Lett. 77, 5079 (1996)

    Google Scholar 

  5. Levine, L.: (2004). ar**v:math/0409407v1 [math.CO]

  6. Langton, C.G.: Studying artificial life with cellular automata. Phys. D 22(1–3), 120–149 (1986). https://doi.org/10.1016/S0166-218X(00)00334-6

    Article  MathSciNet  Google Scholar 

  7. See, for example, Holroyd, A.E., Propp, J.: Rotor walks and Markov chains. ar**v:0904.4507v3 [math.PR]

  8. Kabanets, V.: Derandomization: a brief overview. Bull. Eur. Ass. Theor. Comput. Sci. 76, 88–103 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Takano, H.: On Monte Carlo methods for the Kinetic Ising model. J. Phys. Soc. Jpn. 62, 370–371 (1993)

    Article  Google Scholar 

  10. Mairesse, J., Marcovici, I.: Around probabilistic cellular automata. Theor. Comput. Sci. 559, 42–72 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Astrom, J.A., et al.: Termini of calving glaciers as self-organized critical systems. Nat. Geosci. 7(12), 874–878 (2014)

    Article  Google Scholar 

  12. Dhar, D.: Fragmentation of a sheet by propagating, branching and merging cracks. J. Phys. A 48, 175001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chapius, A., Tetzlaff, T.: The variability of tidewater-glacier calving: origin of event-size and interval distributions. J. Glaciol. 60(222) (2014)

    Google Scholar 

  14. Bond, B., Levine, L.: Abelian networks I: foundations and examples. SIAM J. Discret. Math. 30(2), 856–874 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ben-Avraham, D., Burschka, M.A., Doering, C.R.: Statics and dynamics of a diffusion-limited reaction: anomalous kinetics, nonequilibrium self-ordering, and a dynamic transition. J. Stat. Phys. 60, 695 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Takayasu, H.: Steady-state distribution of generalized aggregation system with injection. Phys. Rev. Lett. 63, 2563 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Aanjaneya Kumar for his help in preparing this typescript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Dhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhar, D. (2023). Modelling Physical Systems with Cellular Automata. In: Das, S., Martinez, G.J. (eds) Proceedings of Second Asian Symposium on Cellular Automata Technology. ASCAT 2023. Advances in Intelligent Systems and Computing, vol 1443. Springer, Singapore. https://doi.org/10.1007/978-981-99-0688-8_1

Download citation

Publish with us

Policies and ethics

Navigation