Improving Real-Time Intelligent Transportation Systems in Predicting Road Accident

  • Conference paper
  • First Online:
Proceedings of International Conference on Recent Innovations in Computing (ICRIC 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1011))

Included in the following conference series:

  • 387 Accesses

Abstract

Advances in the use of an intelligent transportation system (ITS) have been deployed in most of the world, which presents new opportunities for develo** sustainable transportation system. This paper focuses on improving intelligent transportation systems using Big Data tools in predicting road accidents in Nigeria, based on real-time data gotten from Twitter. The work gives a review of common problems associated with the intelligent transportation system, and how this can be improved by utilizing Apache Spark Big Data. The revolution in intelligent transportation systems can be impacted by the availability of large data that can be used to generate new functions and services in intelligent transportation systems. The framework for utilizing Big Data Apache Spark will be discussed. The Big Data Apache Spark applications will be used to collect a large amount of data from various sources in intelligent transportation system; in return, this will help in predicting road accidents before it happens, and also, a feedback system for alerting can be projected. The use of machine learning algorithms is being used to make necessary predictions for the intelligent transportation system. The result obtained shows that for the classified data relating to road accidents, KNN gave a 94% accuracy when compared to other classification algorithms such as the Naïve Bayes, support vector machine, and the decision tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Favour OI, et al (2016) Statistical analysis of pattern on monthly reported road accidents in Nigeria. Sci J Appl Math Stat 4(4):119–128. https://doi.org/10.11648/j.sjams.20160404.11

  2. Igho OE, Isaac OA, Eronimeh OO (2015) Road traffic accidents and bone fractures in Ughelli, Nigeria. IOSR J Dent Med Sci 149(4):2279–861. https://doi.org/10.9790/0853-14452125

  3. Rezaei M, Klette R (2014) Look at the driver, look at the road: No distraction! No accident!. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 129–136. Retrieved from https://openaccess.thecvf.com/content_cvpr_2014/html/Rezaei_Look_at_the_2014_CVPR_paper.html

  4. Menouar H, Guvenc I, Akkaya K, Uluagac AS, Kadri A, Tuncer A (2017) UAV-enabled intelligent transportation systems for the smart city: applications and challenges. IEEE Commun Mag 55(3):22–28. https://doi.org/10.1109/MCOM.2017.1600238CM

    Article  Google Scholar 

  5. Buele J, Salazar LF, Altamirano S, Aldás RA, Urrutia-Urrutia P (2019) Platform and mobile application to provide information on public transport using a low-cost embedded device. RISTI-Rev Iber Sist e Tecnol Inf 476–489

    Google Scholar 

  6. Babar M, Arif F, Jan MA, Tan Z, Khan F (2019) Urban data management system: towards big data analytics for internet of things based smart urban environment using customized Hadoop. Futur Gener Comput Syst 96:398–409. https://doi.org/10.1016/j.future.2019.02.035

  7. D’Silva GM, Khan A, Gaurav, Bari S (2017) Real-time processing of IoT events with historic data using Apache Kafka and Apache Spark with dashing framework. In: 2017 2nd IEEE International conference on recent trends in electronics, information & communication technology (RTEICT), pp 1804–1809. https://doi.org/10.1109/RTEICT.2017.8256910

  8. Contreras-Castillo J, Zeadally S, Guerrero-Ibañez JA (2017) Internet of vehicles: architecture, protocols, and security. IEEE Internet Things J 5(5):3701–3709. https://doi.org/10.1109/JIOT.2017.2690902

  9. Beil C, Kolbe TH (2017) CiytyGML and the streets of New York — a proposal for detailed street space modelling. In: Proceedings of the 12th International 3D GeoInfo Conference. ISPRS Ann Photogramm Remote Sens Spat Inf Sci vol IV-4/W5, pp 26–27

    Google Scholar 

  10. Cao G, Michelini J, Grigoriadis K et al (2015) Cluster-based correlation of severe braking events with time and location. In: 2015 10th System of systems engineering conference (SoSE), pp 187–192. https://doi.org/10.1109/SYSOSE.2015.7151986

  11. Salas A, Georgakis P, Petalas Y (2017) Incident detection using data from social media. In: 2017 IEEE 20th International conference on intelligent transportation systems (ITSC), pp 751–755

    Google Scholar 

  12. Shi Q, Abdel-Aty M (2015) Big data applications in real-time traffic operation and safety monitoring and improvement on urban expressways. Transp Res Part C Emerg Technol 58(Part B):380–394

    Google Scholar 

  13. Alkheder S, Taamneh M, Taamneh S (2017) Severity prediction of traffic accident using an artificial neural network. J Forecast. 36(1):100–108

    Google Scholar 

  14. Ait-Mlouk A, Agouti T (2019) DM-MCDA: a web-based platform for data mining and multiple criteria decision analysis: a case study on road accident. SoftwareX. https://doi.org/10.1016/j.softx.2019.100323

    Article  Google Scholar 

  15. Gu Y, Qian Z, Chen F (2016) From twitter to detector: real-time traffic incident detection using social media data. Transp Res Part C Emerg Technol 67:321–342. https://doi.org/10.1016/j.trc.2016.02.011

    Article  Google Scholar 

  16. Çodur MY, Tortum A (2015) An artificial neural network model for highway accident prediction: a case study of Erzurum, Turkey. Promet Traffic Transp 27(3):217–225

    Google Scholar 

  17. Taamneh M, Alkheder S, Taamneh S (2017) Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates. J Transp Saf Secur 9(2):146–166

    Google Scholar 

  18. Lippi M, Bertini M, Frasconi P (2013) Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning. IEEE Trans Intell Transp Syst 14(2):871–882

    Google Scholar 

  19. Deng S, Jia S, Chen J (2019) Exploring spatial–temporal relations via deep convolutional neural networks for traffic flow prediction with incomplete data. Appl Soft Comput 78:712–721. https://doi.org/10.1016/j.asoc.2018.09.040

  20. Parmar Y, Natarajan S, Sobha G (2019) DeepRange: deep-learning-based object detection and ranging in autonomous driving. IET Intell Transp Syst 13(8):1256–1264

    Google Scholar 

  21. Castro Y, Kim YJ (2016) Data mining on road safety: factor assessment on vehicle accidents using classification models. Int J Crashworthiness 21(2):104–111

    Google Scholar 

  22. Alomari E, Mehmood R, Katib I (2019) Road traffic event detection using twitter data, machine learning, and apache spark. In: 2019 IEEE SmartWorld, ubiquitous intelligence & computing, advanced & trusted computing, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp 1888–1895. https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00332

Download references

Acknowledgements

This paper was sponsored by Covenant University, Ota, Ogun State Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshat Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ademola, O.F., Misra, S., Agrawal, A. (2023). Improving Real-Time Intelligent Transportation Systems in Predicting Road Accident. In: Singh, Y., Verma, C., Zoltán, I., Chhabra, J.K., Singh, P.K. (eds) Proceedings of International Conference on Recent Innovations in Computing. ICRIC 2022. Lecture Notes in Electrical Engineering, vol 1011. Springer, Singapore. https://doi.org/10.1007/978-981-99-0601-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0601-7_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0600-0

  • Online ISBN: 978-981-99-0601-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation