Thermal Analysis Methods

  • Chapter
  • First Online:
Advanced Diagnostics in Combustion Science

Abstract

The discovery of thermocouples in 1826 marked a significant milestone in the development of differential thermal analysis techniques. One notable advancement was the thermobalance introduced by Honda in 1915. Thermal analysis methods play a crucial role in determining the properties and understanding the thermal processes of a sample. These techniques can be classified based on factors such as mass, size, heat flow, and temperature. Some of the commonly used thermal analysis techniques include thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), differential thermal analysis (DTA), thermomechanical analysis (TMA), thermoelectrical analysis (TEA), exchanged gas analysis (EGA), and thermoptometric analysis (TOA). This chapter primarily focuses on TGA, DSC, and DTA. It provides detailed information on the experimental design, working principles, calibration, presentation, and data analysis of these thermal analysis methods. Additionally, the chapter highlights the application of modulated-temperature DSC (MT-DSC) and explores the use of thermal analysis techniques in the field of combustion chemistry. This includes investigations related to oil shales, coal studies, and research on crude oil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 117.69
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dollimore, D. (2003). Thermal analysis. In R. A. Meyers (Ed.), Encyclopedia of Physical Science and Technology (3rd ed., pp. 591–612). Academic Press.

    Chapter  Google Scholar 

  2. Ozawa, T. (2000). Thermal analysis-review and prospect, 355(1–2), 35–42.

    CAS  Google Scholar 

  3. Feist, M. (2015). Thermal analysis: Basics, applications, and benefit, 1(1), 8.

    Google Scholar 

  4. LeChatelier, H. (1887). Bull Soc Fr Mine´ral Cristallogr, 10, P 204–211.

    Google Scholar 

  5. Warrington, S. B., & Höhne, G. W. H. (2000). Thermal Analysis and Calorimetry. In Ullmann's Encyclopedia of Industrial Chemistry.

    Google Scholar 

  6. Saito, Y., et al. (2013). Honda’s thermobalance, 113(3), 1157–1168.

    CAS  Google Scholar 

  7. Brown, M. E. (2001). Introduction to thermal analysis: Techniques and applications (Vol. 1): Springer Science & Business Media.

    Google Scholar 

  8. Gaisford, S. et al. (2019). Principles of thermal analysis and calorimetry: Royal Society of Chemistry.

    Google Scholar 

  9. Dollimore, D. (1994). Thermal analysis. Analytical Chemistry, 66(12), 17–25.

    Article  Google Scholar 

  10. Heal, G. (2002) Thermogravimetry and derivative thermogravimetry, 52.

    Google Scholar 

  11. Bottom, R. (2008). Thermogravimetric analysis, p. 87–118.

    Google Scholar 

  12. Grønli, M. G., et al. (2002). Thermogravimetric analysis and devolatilization kinetics of wood, 41(17), 4201–4208.

    Google Scholar 

  13. Koppius, A. M. et al. (1972). Prog. Vacuum Microbalance Techniques, Heyden, London, 1, 181.

    Google Scholar 

  14. Alexander, K. S., et al. (2019). Thermoanalytical instrumentation and applications. In Ewing’s Analytical Instrumentation Handbook, Fourth Edition (pp. 433–490): CRC Press.

    Google Scholar 

  15. Ekkehard. (2012). Practical applications of thermal analysis methods in material science Krakow. Retrieved from www.netzsch.com.

  16. Tiwari, P., & Deo, M. (2012). Compositional and kinetic analysis of oil shale pyrolysis using TGA–MS, 94, 333–341.

    Google Scholar 

  17. Measurement, M. C. (1974). Manual on the use of thermocouples in temperature measurement (Vol. 470): ASTM International.

    Google Scholar 

  18. Galwey, A. K., & Brown, M. E. (1998). Kinetic background to thermal analysis and calorimetry. In Handbook of thermal analysis and calorimetry (Vol. 1, pp. 147–224): Elsevier.

    Google Scholar 

  19. https://www.tutco.com/tutparts-components/thermocouples/

  20. Robens, E. (1985). Vacuum systems for vacuum microbalances, 35(1), 1–4.

    CAS  Google Scholar 

  21. Inderijarso, S., et al. (1996). Thermochimica Acta, 277, 41.

    Article  Google Scholar 

  22. Robinson, J. W. et al. (2014). Undergraduate instrumental analysis (7th ed.). CRC Press. https://doi.org/10.1201/b15921.

  23. Duval, C. (1963). Inorganic thermogravimetric analysis. Elsevier, Amsterdam, 2nd Edn.

    Google Scholar 

  24. Wesley, W., & Wendlandt, M. (1986). Thermal analysis, 55.

    Google Scholar 

  25. Slovák, V. (2001). Determination of kinetic parameters by direct non-linear regression from TG curves, 372(1–2), 175–182.

    Google Scholar 

  26. Le Chatelier, H. (1904). High-temperature measurements online, 13, 193.

    Google Scholar 

  27. Speil, S., et al. (1949). Theory of DTA: Historical basis, 21, 683.

    Google Scholar 

  28. Mackenzie, R. (1984). Origin and development of differential thermal analysis, 73(3), 307–367.

    CAS  Google Scholar 

  29. Ozawa, T. (1966). A new method of quantitative differential thermal analysis, 39(10), 2071–2085.

    CAS  Google Scholar 

  30. Boettinger, W. J. et al. (2007). DTA and heat-flux DSC measurements of alloy melting and freezing. In Methods for phase diagram determination (pp. 151–221): Elsevier.

    Google Scholar 

  31. Boettinger, W., et al. (2006). DTA and Heat-flux DSC Measurements of Alloy Melting and Freezing: NIST Recommended Practice Guide, 960, 15.

    Google Scholar 

  32. Presoly, P., et al. (2013). Identification of defect prone peritectic steel grades by analyzing high-temperature phase transformations, 44(12), 5377–5388.

    CAS  Google Scholar 

  33. Riga, A., & Collins, R. (2006). Differential Scanning Calorimetry and Differential Thermal Analysis. In Encyclopedia of Analytical Chemistry.

    Google Scholar 

  34. Gundlach, E., & Gallagher, P. (1997). Synthesis of nickel base alloys for use as magnetic standards, 49(2), 1013–1016.

    CAS  Google Scholar 

  35. Brown, M. E., et al. (1994). Temperature calibration in thermogravimetry using energetic materials, 242, 141–152.

    CAS  Google Scholar 

  36. Gallagher, P., et al. (2003). Magnetic temperature standards for TG, 72(3), 1109–1116.

    CAS  Google Scholar 

  37. Brickwood, K. J., et al. (2019). Consumer-based wearable activity trackers increase physical activity participation: Systematic review and meta-analysis, 7(4), e11819.

    Google Scholar 

  38. Akash, M. S. H., & Rehman, K. (2020). Essentials of pharmaceutical analysis. Springer.

    Google Scholar 

  39. Yi, F., & LaVan, D. A. (2019). Nanocalorimetry: Exploring materials faster and smaller, 6(3), 031302.

    Google Scholar 

  40. Ehrenstein, G. W. et al. (2003). Praxis der thermischen Analyse von Kunststoffen: Hanser Verlag.

    Google Scholar 

  41. Chatwal, G. R., & Anand, S. K. (2002). Instrumental Methods of Chemical Analysis: (for Hons. and Post-graduate Students of Indian and Foreign Universities): Himalaya publishing house.

    Google Scholar 

  42. Berlin, H. U. A. Z. (2009). Investigation of polymers with differential scanning calorimetry, 1–17.

    Google Scholar 

  43. Global, H. H. T. (2021). Principle of differential thermal analysis (DTA) https://www.hitachi-hightech.com/global/products/science/tech/ana/thermal/descriptions/dta.html.

  44. Schoff, C. K. (2008). Differential scanning calorimetry. In Am Coatings Assoc-Aca 1500 Rhode Island Ave Nw, Washington, DC 20005 USA.

    Google Scholar 

  45. Warrington, S. B., & Höhne, G. W. (2000). Thermal analysis and calorimetry.

    Google Scholar 

  46. Skoog, D. A. et al. (2007). Principles of instrumental analysis. In Thomson Brooks/Cole.

    Google Scholar 

  47. Banerjee, D. (1993). Experimental techniques in thermal analysis thermogravimetry (TG) & differential scanning calorimetry (DSC). Paper presented at the Analytical Proceedings.

    Google Scholar 

  48. Kok, M. V. (2010). Combustion characteristics of Fossil Fuels by thermal analysis methods, 75–87.

    Google Scholar 

  49. Kok, M. V. (2012). Simultaneous thermogravimetry–calorimetry study on the combustion of coal samples: effect of heating rate, 53(1), 40–44.

    Google Scholar 

  50. Zhang, H., et al. (2020). Study on non-isothermal kinetics and the influence of calcium oxide on hydrogen production during bituminous coal pyrolysis, 150, 104888.

    CAS  Google Scholar 

  51. Kök, M. V., et al. (2021). TGA and DSC investigation of different clay mineral effects on the combustion behavior and kinetics of crude oil from Kazan region. Russia, 200, 108364.

    Google Scholar 

  52. Kök, M., et al. (2004). Combustion characteristics of lignite and oil shale samples by thermal analysis techniques, 76(1), 247–254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tian, ZY., Mbayachi, V.B., Dai, WK., Khalil, M., Ayejoto, D.A. (2023). Thermal Analysis Methods. In: Tian, ZY. (eds) Advanced Diagnostics in Combustion Science. Springer, Singapore. https://doi.org/10.1007/978-981-99-0546-1_3

Download citation

Publish with us

Policies and ethics

Navigation