Biomass (Algae) Valorization as an Energy Perspective: Review of Process Options and Utilization

  • Chapter
  • First Online:
Sustainable Valorization of Agriculture & Food Waste Biomass

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 159 Accesses

Abstract

Recent geopolitical shocks have highlighted the need for countries to shift their dependency from the fossil fuels to renewable and domestically sustainable energy as the primary source of energy. Algae are the original green technology that is renewable, sustainable, and environmentally friendly and has great potential due to its abundant, high carbohydrate and absence of lignin properties. Apart from making biodiesel, algae can be utilized to create a variety of other products like nutraceuticals, pharmaceuticals, and cosmetics. In this review, I have summarized the recent technological advances in the production of algal biomass as a feedstock and its conversion to value-added products. Economics of the production and its recovery as well as the main challenges and of refineries using algae as biomass is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 189.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alhattab M, Kermanshahi-Pour A, Brooks MSL (2019) Microalgae disruption techniques for product recovery: influence of cell wall composition. J Appl Phycol 31:61–88

    Article  Google Scholar 

  • Alice F, Luisa G (2020) Chapter 28—Microalgal biorefineries. In: Jacob-Lopes E, Maroneze MM, Queiroz MI, Zepka LQ (eds) Handbook of microalgae-based processes and products. Academic Press, San Diego, CA, pp 771–798

    Google Scholar 

  • Ammar EE, Aioub AAA, Elesawy AE, Karkour AM, Mouhamed MS, Amer AA, El-Shershaby NA (2022) Algae as bio-fertilizers: between current situation and future prospective. Saudi J Biol Sci 29:3083–3096

    Article  PubMed  PubMed Central  Google Scholar 

  • Ana G, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9(4):625–644

    Article  Google Scholar 

  • Anderson K, Sallis P, Uyanik S (2003) 24. Anaerobic treatment processes. In: Mara D, Horan N (eds) Handbook of water and wastewater microbiology. Academic Press, New York, pp 391–426

    Chapter  Google Scholar 

  • Annika S, Eggers LF, Schwudke D (2016) Liquid extraction: bligh and dyer. In: Wenk M (ed) Encyclopedia of lipidomics. Springer, Dordrecht

    Google Scholar 

  • Aramaki T, Watanabe MM, Nakajima M et al (2021) Dewatering of microalgae suspensions by cake filtration with filter cloths. J Appl Phycol 33:1977–1985

    Article  CAS  Google Scholar 

  • Aravind S, Barik D, Ragupathi P, Vignesh G (2021) Investigation on algae oil extraction from algae Spirogyra by Soxhlet extraction method. Mater Today Proc 43:308–313

    Article  CAS  Google Scholar 

  • Azeem M, Batool F, Iqbal N, Ikram-ul-Haq (2017) Chapter 1—Algal-based bio-polymers. In: Zia KM, Zuber M, Ali M (eds) Algae based polymers, blends, and composites. Elsevier, Amsterdam, pp 1–31

    Google Scholar 

  • Baskar G, Kalavathy R, Aiswarya I, Selvakumari A (2019) 7—Advances in bio-oil extraction from nonedible oil seeds and algal biomass. In: Azad K (ed) Advances in eco-fuels for a sustainable environment. Woodhead Publishing Series in Energy, Cambridge, pp 187–210

    Chapter  Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  CAS  PubMed  Google Scholar 

  • Bhatia SC (2014) 22—Bio-diesel. In: Advanced renewable energy systems. Woodhead Publishing, New Delhi, pp 573–626

    Chapter  Google Scholar 

  • Bilad MR, Arafat HA, Vankelecom IFJ (2014) Membrane technology in microalgae cultivation and harvesting: a review. Biotechnol Adv 32:1283–1300

    Article  CAS  PubMed  Google Scholar 

  • Buchholz CM, Krause G, Buck BH (2012) Seaweed and man. In: Seaweed biology: novel insights into ecophysiology, ecology and utilization, pp 471–493

    Chapter  Google Scholar 

  • Buelna G, Bhattarai KK, de la Noue J, Taiganides EP (1990) Evaluation of various flocculants for the recovery of algal biomass growth on pig-waste. Biol Wastes 31:211–222

    Article  CAS  Google Scholar 

  • Canfield DE (2004) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36

    Article  Google Scholar 

  • Chen PH (1987) Factors influencing methane fermentation of micro-alga. Dissertation, University of California, Berkley

    Google Scholar 

  • Chen C, Hu Z, Ma X (2012) A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresour Technol 107:487–493

    Article  PubMed  Google Scholar 

  • Costa JAV, Freitas BCB, Santos TD, Mitchell BG, Morais MG (2019) Chapter 9. Open pond systems for microalgal culture. In: Pandey A, Chang J-S, Soccol CR, Lee D-J, Chisti Y (eds) Biomass, bio-fuels, biochemicals, bio-fuels from algae, 2nd edn. Elsevier, Amsterdam, pp 199–223

    Google Scholar 

  • Dalena F, Senatore A, Tursi A, Basile A (2017) 17—Bio-energy production from second- and third-generation feedstocks. In: Dalena F, Basile A, Rossi C (eds) Bio-energy systems for the future. Woodhead Publishing, Sawston, pp 559–599

    Chapter  Google Scholar 

  • Darzins A, Pienkos P, Edye L (2010) Current status and potential for algal bio-fuels production. Bio-energy report

    Google Scholar 

  • de Farias Silva CE, Bertucco A (2016) Bio-ethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem 51:1833–1842

    Article  Google Scholar 

  • Di Caprio F (2020) Methods to quantify biological contaminants in microalgae cultures. Algal Res 49:101943

    Article  Google Scholar 

  • Díaz Rey MR, Cortés Reyes M, Herrera C, Larrubia MA, Amadeo NE et al (2015. 257; Part 2; 11–2015) Hydrogen-rich gas production from algae-biomass by low temperature catalytic gasification. In: Catalysis today. Elsevier Science, Amsterdam, pp 177–184

    Google Scholar 

  • Duman G, Uddin MA, Yanik J (2014) Hydrogen production from algal biomass via steam gasification. Bioresour Technol 166:24–30

    Article  CAS  PubMed  Google Scholar 

  • Elliott DC, Biller P, Ross AB, Schmidt AJ, Jones SB (2015) Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour Technol 178:147–156

    Article  CAS  PubMed  Google Scholar 

  • Fasaei F, Bitter JH, Slegers PM, van Boxtel AJB (2018) Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res 31:347–362

    Article  Google Scholar 

  • Fernandez Sevilla JM, Ceron Garcia MC, Sanchez Miron A, Belarbi EH, Garcia Camacho F, Molina Grima E (2004) Pilot plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photo-bioreactors: studies in fed-batch mode. Biotechnol Prog 20:728–736

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    Article  CAS  PubMed  Google Scholar 

  • Gerde JA, Yao L, Lio JY, Wen Z, Wang T (2014) Microalgae flocculation: Impact of flocculant type, algae species and cell concentration. Algal Res 3:30–35

    Article  Google Scholar 

  • Gomes TA, Zanette CM, Spier MR (2020) An overview of cell disruption methods for intracellular biomolecules recovery. Prep Biochem Biotechnol 50(7):635–654

    Article  CAS  PubMed  Google Scholar 

  • Grabski AC (2009) Chapter 18. Advances in preparation of biological extracts for protein purification. In: Burgess RR, Deutscher MP (eds) Methods in enzymology, vol 463. Academic Press, San Diego, CA, pp 285–303

    Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Bio-fuels from algae: challenges and potential. Biofuels 1(5):763–784. https://doi.org/10.4155/bfs.10.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heasman M, Diemar J, O’connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary. Aquacult Res 31:637–659

    Google Scholar 

  • Helena M, Amaro A, Guedes C, Malcata FX (2011) Advances and perspectives in using microalgae to produce bio-diesel. Appl Energy 88:3402–3410

    Article  Google Scholar 

  • Hon-Nami K (2006) A unique feature of hydrogen recovery in endogenous starch-to-alcohol fermentation of the marine microalga, Chlamydomonas perigranulata. Appl Biochem Biotechnol 131(1–3):808–828

    Article  PubMed  Google Scholar 

  • Huang Q, Jiang F, Wang L, Yang C (2017) Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 3(3):318–329

    Article  Google Scholar 

  • Huber GW, Dumesic JA (2006) An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today 111(132):119

    Article  CAS  Google Scholar 

  • Jankowska E, Sahu AK, Oleskowicz-Popiel P (2017) Biogas from microalgae: review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion. Renew Sustain Energy Rev 75:692–709

    Article  CAS  Google Scholar 

  • Kamyab H, Chelliapan S, Kumar A, Rezania S, Talaiekhozani A, Khademi T, Sharma S (2019) Microalgal biotechnology application towards environmental sustainability. In: Application of microalgae in wastewater treatment: volume 2: biorefinery approaches of wastewater treatment, pp 445–465

    Chapter  Google Scholar 

  • Kaštovský J, Fučíková K, Veselá J, Carías CB, Vegas-Veilarrúbia T (2019) Chapter 5—Algae. In: ValentíRull TV-V, Huber O, Señaris C (eds) Biodiversity of Pantepui. Academic Press, New York, pp 95–120

    Chapter  Google Scholar 

  • Kazbar A, Cogne G, Urbain B, Marec H, Gouic B, Tallec J, Takache H, Ismail A, Pruvost J (2019) Effect of dissolved oxygen concentration on microalgal culture in photo-bioreactors. Algal Res 39:101432. https://doi.org/10.1016/j.algal.101432

    Article  Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for bio-fuels, feed, and other products. Microb Cell Fact 17:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraan S (2012) Algal polysaccharides, novel applications and outlook. In: Chang C-F (ed) Carbohydrates—comprehensive studies on glycobiology and glycotechnology. IntechOpen, London. https://doi.org/10.5772/51572

    Chapter  Google Scholar 

  • Kumar A (2019) The scenario of pharmaceuticals and development of microwave assisted extraction techniques

    Book  Google Scholar 

  • Kwangwook K, Ehrlich A, Perng V, Chase JA, Raybould H, Li X, Atwill ER, Whelan R, Sokale A, Liu Y (2019) Algae-derived β-glucan enhanced gut health and immune responses of weaned pigs experimentally infected with a pathogenic E. coli. Anim Feed Sci Technol 248:114–125

    Article  Google Scholar 

  • Laamanen CA, Ross GM, Scott JA (2016) Flotation harvesting of microalgae. Renew Sustain Energy Rev 58:75–86

    Article  Google Scholar 

  • Lam MK, Loy ACM, Yusup S, Lee KT (2019) Chapter 9. Biohydrogen production from algae. In: Pandey A, Mohan SV, Chang J-S, Hallenbeck PC, Larroche C (eds) Biomass, bio-fuels, biochemicals, biohydrogen, 2nd edn. Elsevier, Amsterdam, pp 219–245

    Google Scholar 

  • Lee RA, Lavoie JM (2013) From first-to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Anim Front 3(2):6–11

    Article  Google Scholar 

  • Lozoya-Gloria E, Cruz X, Ozawa-Uyeda T (2019) The colonial microalgae Botryococcus braunii as biorefinery. In: Vítová M (ed) Microalgae—from physiology to application. IntechOpen, London. https://doi.org/10.5772/intechopen.88206

    Chapter  Google Scholar 

  • Ljubic A, Safafar H, Holdt SL, Jacobsen C (2018) Biomass composition of Arthrospira platensis during cultivation on industrial process water and harvesting. J Appl Phycol 30:943–954

    Article  CAS  Google Scholar 

  • Macke E, Tasiemski A, Massol F, Callens M, Decaestecker E (2017) Life history and eco-evolutionary dynamics in light of the gut microbiota. Oikos 126(4):508–531

    Article  Google Scholar 

  • Masojídek J, Torzillo G (2014) Mass cultivation of freshwater microalgae☆. In: Reference module in earth systems and environmental sciences. Elsevier, Amsterdam

    Google Scholar 

  • Mastropetros SG, Pispas K, Zagklis D, Ali SS, Kornaros M (2022) Biopolymers production from microalgae and cyanobacteria cultivated in wastewater: recent advances. Biotechnol Adv:107999

    Google Scholar 

  • Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 356:328–334

    Article  CAS  Google Scholar 

  • Mollah MYA, Schennach R, Parga JR, Cocke DL (2001) Electrocoagulation (EC)—science and applications. J Hazard Mater 84(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Morales M, Aflalo C, Bernard O (2021) Microalgal lipids: a review of lipids potential and quantification for 95 phytoplankton species. Biomass Bioenergy 150:106108

    Article  CAS  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56

    Article  CAS  PubMed  Google Scholar 

  • Najjar Y, Abu-Shamleh A (2020) Harvesting of microalgae by centrifugation for bio-diesel production: a review. Algal Res 51:102046

    Article  Google Scholar 

  • Naqvi SAR, Akbar N, Shah SMA, Ali S, Abbas A (2021) Green approaches for the extraction of bioactive from natural sources for pharmaceutical applications. In: Green sustainable process for chemical and environmental engineering and science. Elsevier, pp 269–291

    Chapter  Google Scholar 

  • Nikolai P, Rabiyat B, Aslan A, Ilmutdin A (2019) Supercritical CO2: properties and technological applications—a review. J Therm Sci 28(3):394–430

    Article  CAS  Google Scholar 

  • Onwudili J, Lea-Langton AR, Ross AB, Williams PT (2013) Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling. Bioresour Technol 127:72–80

    Article  CAS  PubMed  Google Scholar 

  • Poudyal R, Loskot P, Nepal R, Parajuli R, Khadka SK (2019) Mitigating the current energy crisis in Nepal with renewable energy sources. Renew Sust Energ Rev 116:109388

    Article  Google Scholar 

  • Qiu R, Gao S, Lopez PA, Ogden KL (2017) Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Res 28:192–199

    Article  Google Scholar 

  • Ratnayaka DD, Brandt MJ, Michael Johnson K (2009) Chapter 7. Storage, clarification and chemical treatment, water supply, 6th edn. Butterworth-Heinemann, pp 267–314

    Google Scholar 

  • Russell C (2013) Algae: the world’s most important “plants” an introduction. Mitig Adapt Strat Glob Chang 18:5–12

    Article  Google Scholar 

  • Schlesinger WH, Bernhardt ES (2020) Chapter 8. Inland waters. In: Schlesinger WH, Bernhardt ES (eds) Biogeochemistry, 4th edn. Academic Press, New York, pp 293–360

    Chapter  Google Scholar 

  • Show K-Y, Yan Y-G, Lee D-J (2019) Chapter 13. Biohydrogen production from algae: perspectives, challenges, and prospects. In: Pandey A, Chang J-S, Soccol CR, Lee D-J, Chisti Y (eds) Biomass, bio-fuels, biochemicals, bio-fuels from algae, 2nd edn. Elsevier, Amsterdam, pp 325–343

    Google Scholar 

  • Singh G, Patidar SK (2018) Microalgae harvesting techniques: a review. J Environ Manage 217:499–508

    Article  PubMed  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal bio-diesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24(7):4062–4077

    Article  CAS  Google Scholar 

  • Tews IJ, Zhu Y, Drennan C, Elliott DC, Snowden-Swan LJ, Onarheim K, Beckman D et al (2014) Biomass direct liquefaction options. Technoeconomic and life cycle assessment (No. PNNL-23579). Pacific Northwest National Lab (PNNL), Richland, WA

    Book  Google Scholar 

  • Tran DT, Yeh KL, Chen CL, Chang JS (2012) Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for bio-diesel synthesis using immobilized Burkholderia lipase. Bioresour Technol 108:119–127

    Article  CAS  PubMed  Google Scholar 

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photo-bioreactors. Biotechnol Bioeng 57:187–197

    Article  CAS  PubMed  Google Scholar 

  • Wahlen BD, Willis RM, Seefeldt LC (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102(3):2724–2730

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Lan CQ, Horsman M (2012) Closed photo-bioreactors for production of microalgal biomasses. Biotechnol Adv 30:904–912

    Article  CAS  PubMed  Google Scholar 

  • Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214

    Article  Google Scholar 

  • Wrigley EA (2013) Energy and the English industrial revolution. Philos Trans R Soc A Math Phys Eng Sci 371(1986):20110568

    Article  CAS  Google Scholar 

  • Xu Y, Ibrahim IM, Harvey PJ (2016) The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30. Plant Physiol Biochem 106:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Li R, Zhang B, Qiu Q, Wang B, Yang H, Ding Y, Wang C (2019) Pyrolysis of microalgae: a critical review. Fuel Process Technol 186:53–72

    Article  CAS  Google Scholar 

  • Yu J, Takahashi P (2007) Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. In: Communicating current research and educational topics and trends in applied microbiology, vol 1, pp 79–89

    Google Scholar 

  • Yun J-H, Cho D-H, Lee S, Heo J, Tran Q-G, Chang YK, Kim H-S (2018) Hybrid operation of photo-bioreactor and wastewater-fed open raceway ponds enhances the dominance of target algal species and algal biomass production. Algal Res 29:319–329

    Article  Google Scholar 

  • Zeng J, ** pyrolysis-gasification of biomass for high H2/CO syngas production. Fuel Process Technol 168:116–122

    Article  CAS  Google Scholar 

  • Zhou J, Wang M, Saraiva JA, Martins AP, Pinto CA, Prieto MA, Simal-Gandara J, Cao H, **ao J, Barba FJ (2022) Extraction of lipids from microalgae using classical and innovative approaches. Food Chem 384:132236

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Tiwari, A.K., Jana, S.K., Pal, D.B. (2023). Biomass (Algae) Valorization as an Energy Perspective: Review of Process Options and Utilization. In: Pal, D.B., Tiwari, A.K. (eds) Sustainable Valorization of Agriculture & Food Waste Biomass. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-99-0526-3_6

Download citation

Publish with us

Policies and ethics

Navigation