Research Progress of MnZn Ferrite Nanomaterials Synthesized by Hydrothermal Method

  • Conference paper
  • First Online:
The Proceedings of the 17th Annual Conference of China Electrotechnical Society (ACCES 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1013))

Included in the following conference series:

  • 881 Accesses

Abstract

MnZn ferrite nanomaterials have excellent properties such as high chemical inertness, magnetic property, and resistance to corrosion, which have received considerable attentions and been widely used in chemical, ceramic, biological and medical fields. The hydrothermal method is a general synthetic route for preparing nanoscale MnZn ferrites. Meanwhile, the hydrothermal reaction mechanism and hydrothermal process conditions play a significant role in the morphology, composition and particle size of MnZn ferrite nanomaterials. Therefore, this review has summarized the research process of nanoscale MnZn ferrites synthesized via the hydrothermal method. Besides, the hydrothermal reaction mechanism and the influence of hydrothermal process conditions have been studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duan, Z.X., Chen, H.Z., Tao, X.Y., et al.: Fabrication and properties of MnZn ferrite with large length-diameter ratio. Ferroelectrics 554(1), 204–211 (2020)

    Article  Google Scholar 

  2. Luo, F., Duan, Z.X., Zhang, Y.Y., et al.: Influence of microstructure optimization on magnetic and thermal properties of MnZn ferrite. J. Mater. Sci.: Mater. Electron. 21(12), 15633–15642 (2021)

    Google Scholar 

  3. Dippong, T.: Characterization and applications of metal ferrite nanocomposites. Nanomaterials 12(1), 107 (2021)

    Article  Google Scholar 

  4. Das, S.B., Singh, R.K., Kumar, V., et al.: Structural, magnetic, optical and ferroelectric properties of Y3+ substituted cobalt ferrite nanomaterials prepared by a cost-effective sol-gel route. Mater. Sci. Semicond. Process. 145, 106632 (2022)

    Article  Google Scholar 

  5. Kaewmanee, T., Phuruangrat, A., Thongtem, T., Thongtem, S.: Solvothermal synthesis of Mn–Zn Ferrite(core)@SiO2(shell)/BiOBr0.5Cl0.5 nanocomposites used for adsorption and photocatalysis combination. Ceram. Int. 46(3), 3655–3662 (2020). https://doi.org/10.1016/j.ceramint.2019.10.085

    Article  Google Scholar 

  6. Sertkol, M., et al.: Sonochemical synthesis of Mn0.5Zn0.5ErxDyxFe2-2xO4 (x ≤ 0.1) spinel nanoferrites: magnetic and textural investigation. J. Mol. Struct. 1258, 132680 (2022). https://doi.org/10.1016/j.molstruc.2022.132680

    Article  Google Scholar 

  7. Mestre, S., Gozalbo, A., Lorente-Ayza, M.M., et al.: Low-cost ceramic membranes: A research opportunity for industrial application. J. Eur. Ceram. Soc. 39(12), 3392–3407 (2019)

    Article  Google Scholar 

  8. Vidyuk, T.M., Korchagin, M.A., Dudina, D.V., et al.: Synthesis of ceramic and composite materials using a combination of self-propagating high-temperature synthesis and spark plasma sintering. Combust Explos. Shock Waves 57(4), 385–397 (2021)

    Article  Google Scholar 

  9. Wang, L., Ma, D.C., Guo, C., et al.: CsPbBr 3 nanocrystals prepared by high energy ball milling in one-step and structural transformation from CsPbBr3 to CsPb2Br5. Appl. Surf. Sci. 543, 148782 (2021)

    Article  Google Scholar 

  10. Liu, Y.Y., Guo, X.L., Chen, Z.T., et al.: Microwave-synthesis of g-C3N4 nanoribbons assembled seaweed-like architecture with enhanced photocatalytic property. Appl. Catal. B 266, 118624 (2020)

    Article  Google Scholar 

  11. Sahu, R., Swain, S., Mahapatra, A., et al.: Microwave-assisted high-energy ball milling synthesis of SBT nano-ceramics. Integr. Ferroelectr. 205(1), 177–185 (2020)

    Article  Google Scholar 

  12. Hwang, J.A., Ju, B,K., Chun, M.: Characterization and synthesis of MnZn ferrite nanoparticles synthesized by thermal decomposition. J. Ceram. Process. Res. 21(Special Issue 1), s28–s32 (2020)

    Google Scholar 

  13. Samieemehr, M., Arab, A., Kiani, E.: Influence of two-step sintering on power loss and permeability dispersion of MnZnNi ferrite. J. Magn. Magn. Mater. 553, 169269 (2022)

    Article  Google Scholar 

  14. Liu, G.H., Xu, J., Li, R.X.: Facile synthesis of Cs0.3WO3 nanofibers by hydrothermal method and their optical properties. Opt. Mater. 107, 110147 (2020). https://doi.org/10.1016/j.optmat.2020.110147

    Article  Google Scholar 

  15. Liu, G.H., Kong, F.D., Xu, J., et al.: Novel synthesis of 0D, 1D and 2D nano-CsxWO3 and their tunable optical-thermal response performance. J. Mater. Chem. C 8(30), 10342–10351 (2020)

    Article  Google Scholar 

  16. Mallesh, S., Srinivas, V., Vasundhara, M., et al.: Low-temperature magnetization behaviors of superparamagnetic MnZn ferrites nanoparticles. Physica B Condens. Matter 582, 411963 (2020)

    Article  Google Scholar 

  17. Mallesh, S., Kim, K.H.: PVP encapsulated Mn0.8Zn0.2Fe2O4 nanoparticles: synthesis, microstructure, and magnetic characterizations. J. Magn. 26(2), 199–204 (2021). https://doi.org/10.4283/JMAG.2021.26.2.199

    Article  Google Scholar 

  18. Bagwe, R.P., Yang, C., Hilliard, L.R., et al.: Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20(19), 8336–8342 (2004)

    Google Scholar 

  19. Binnemans, K., Jones, P.T., Manjón Fernández, Á., et al.: Hydrometallurgical processes for the recovery of metals from steel industry by-products: a critical review. J. Sustain. Metall. 6(4), 505–540 (2020)

    Article  Google Scholar 

  20. Thakur, P., Chahar, D., Taneja, S., et al.: A review on MnZn ferrites: synthesis, characterization and applications. Ceram. Int. 46(10), 15740–15763 (2020)

    Article  Google Scholar 

  21. Liu, Q., Huang, H.X., Lai, L.F., et al.: Hydrothermal synthesis and magnetic properties of NiFe2O4 nanoparticles and nanorods. J. Mater. Sci. 44(5), 1187–1191 (2009)

    Article  Google Scholar 

  22. Hou, X.Y., Feng, J., Xu, X.D., et al.: Synthesis and characterizations of spinel MnFe2O4 nanorod by seed-hydrothermal route. J. Alloy. Compd. 491(1–2), 258–263 (2010)

    Article  Google Scholar 

  23. Dokko, K., Koizumi, S., Nakano, H., et al.: Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. J. Mater. Chem. 17(45), 4803–4810 (2007)

    Article  Google Scholar 

  24. Jiaqiang, X., Yu**, C., Yadong, L., et al.: Gas sensing properties of ZnO nanorods prepared by hydrothermal method. J. Mater. Sci. 40(11), 2919–2921 (2005)

    Article  Google Scholar 

  25. Shen, X., Wang, Y.X., Yang, X., et al.: Megahertz magneto-dielectric properties of nanosized NiZnCo ferrite from CTAB-assisted hydrothermal process. J. Mater. Sci.: Mater. Electron. 19(6), 1588–1592 (2009)

    Google Scholar 

  26. Pervaiz, E., Gul, I.H., Anwar, H.: Hydrothermal synthesis and characterization of CoFe2O4 nanoparticles and nanorods. J. Supercond. Novel Magn. 26(2), 415–424 (2013)

    Article  Google Scholar 

  27. Baykal, A., Kasapoglu, N., Koseoglu, Y., et al.: CTAB assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. J. Alloy. Compd. 464(1–2), 514–518 (2008)

    Article  Google Scholar 

  28. Sang, S.B., Gu, Y.Y., Tang, A.D., et al.: The effect of additives on hydrothermal preparation of nanometer Mn, Zn ferrite particles. J. Cent. South Univ. Technol. 04, 327–329 (2000). (in Chinese)

    Google Scholar 

  29. Zhang, H.Q., Hua, F., Zhang, X.L., et al.: Effect of PEG6000 on magnetic properties of the Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 439, 228–235 (2017)

    Article  Google Scholar 

  30. Kaewmanee, T., Wannapop, S., Phuruangrat, A., et al.: Effect of oleic acid content on manganese-zinc ferrite properties. Inorg. Chem. Commun. 103, 87–92 (2019)

    Article  Google Scholar 

  31. Tan, X.P., Gu, Y.Y., L, S.Q., et al.: Effects of La3+ dopant on the structure and magnetic properties of MnZn ferrite nano-particles synthesized by hydrothermal method. J. Magn. Mater. Dev. (02), 20–21+46 (2004). (in Chinese)

    Google Scholar 

  32. Cao, H.Q., Lin, B.Y., Zhang, S.J., et al.: Hydrothermal synthesis carbon nanotubes coating with Mn0.5Zn0.5Fe2O4 magnetic materials. Journal of Shenzhen University (Science and Engineering) 30(1), 12–16 (2013). (in Chinese)

    Article  Google Scholar 

  33. Li, Y., Cai, J.F., Sang, S.B.: Synthesis of Mn-Zn-Fe soft magnetic nawarystalline by hydrothernal method. Ceram. Eng. (01), 29–31+42 (2003)

    Google Scholar 

  34. Li, X., Sun, R., Luo, B.Y., et al.: Synthesis and magnetic properties of manganese-zinc ferrite nanoparticles obtained via a hydrothermal method. J. Mater. Sci.: Mater. Electron. 28(16), 12268–12272 (2017)

    Google Scholar 

  35. Xuan, Y.M., Li, Q., Yang, G.: Synthesis and magnetic properties of Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 312(02), 464–469 (2007)

    Article  Google Scholar 

  36. Du, L.H., Zhang, J.M., Yang, J., et al.: Effect of pH on the growth and magnetic properties of Nano-Mn-Zn ferrite synthesized by hydrothermal. J. Synth. Cryst. 47(10), 2089–2093+2133 (2018). (in Chinese)

    Google Scholar 

  37. Gu, Y.Y., Hu, Q.M., Li, D., et al.: Hydrothermal synthesis of MnZn ferrite powder technics with co-dump coprecipi tation. New Chem. Mater. 01, 33–35 (2005). (in Chinese)

    Google Scholar 

  38. Zhong, S.A., Hu, Q.M., Gu, Y.Y.: Effect of magnetic field on manganese valence of MnZn ferrite prepared by hydrothermal synthesis. Electron. Compon. and Mater. 25(4), 44–46 (2006). (in Chinese)

    Google Scholar 

  39. Ao, W., Li, J., Yang, H., et al.: Mechanochemical synthesis of zinc oxide nanocrystalline. Powder Technol. 168(3), 148–151 (2006). (in Chinese)

    Article  Google Scholar 

  40. Matsuo, S., Okaya, K., Fujita, T., et al.: Proposal of ball milling system suitable under the seafloor for development of hydrothermal deposits by simulation. Resources Processing 61(3), 155–161 (2014)

    Article  Google Scholar 

  41. Lai, Z.Y., Xu, G.L., Liu, M.: Study of ball milling effects to MnZn ferrites nanoparticles by hydrothermsl synthesis. J. Southwest Univ. Sci. Technol. 06, 52–54 (2007)

    Google Scholar 

  42. Menéndez, J.A., Arenillas, A., Fidalgo, B., et al.: Microwave heating processes involving carbon materials. Fuel Process. Technol. 91(1), 1–8 (2010)

    Article  Google Scholar 

  43. Xu, X., Yang, W., Liu, J., et al.: Synthesis of a high-permeance NaA zeolite membrane by microwave heating. Adv. Mater. 12(3), 195–198 (2010)

    Article  Google Scholar 

  44. Lee, J.H., Kim, C.K., Katoh, S., et al.: Microwave-hydrothermal versus conventional hydrothermal preparation of Ni- and Zn-ferrite powders. J. Alloy. Compd. 325(1–2), 276–280 (2001)

    Article  Google Scholar 

  45. Lai, Z.Y., Xu, G.L., Zheng, Y.L.: Microwave assisted low temperature synthesis of MnZn ferrite nanoparticles. Nanoscale Res. Lett. 2(1), 40–43 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China Youth Fund (51907186), STS Regional Key Project of CAS (KFJ-STS-QYZD-142) and Bei**g Science and Technology Planning Project (Z201100008420008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxia Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Bei**g Paike Culture Commu. Co., Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shang, Y., Luo, F., Duan, Z. (2023). Research Progress of MnZn Ferrite Nanomaterials Synthesized by Hydrothermal Method. In: Li, J., **e, K., Hu, J., Yang, Q. (eds) The Proceedings of the 17th Annual Conference of China Electrotechnical Society. ACCES 2022. Lecture Notes in Electrical Engineering, vol 1013. Springer, Singapore. https://doi.org/10.1007/978-981-99-0451-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0451-8_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0450-1

  • Online ISBN: 978-981-99-0451-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation