Gold-ZnO Coated Surface Plasmon Resonance Refractive Index Sensor Based on Photonic Crystal Fiber with Tetra Core in Hexagonal Lattice of Elliptical Air Holes

  • Conference paper
  • First Online:
Robotics, Control and Computer Vision

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1009))

  • 292 Accesses

Abstract

A photonic crystal fiber (\(PCF\))-based surface plasmon resonance (\(SPR\)) refractive index (\(RI\)) sensor is proposed and presented in this research work. The proposed \(RI\) sensor can detect chemicals, analytes, and oil samples falling in the \(RI\) range of \(1.40 \,RIU\) to \(1.48 \,RIU.\) The detection capability of the sensor is investigated employing traditional sensor parameters like “wavelength sensitivity,” “amplitude sensitivity (AS),” “sensor resolution,” and “linear relationship between \(RI\) and resonant wavelength.” A combination of noble material Gold (\(Au\)) and Zinc oxide (\(ZnO\)) is coated as the plasmonic material for electron excitation in the presented sensor design. The sensing parameters obtained from the proposed sensor predict it as a suitable sensor for analytes, household oil, and chemical detection falling in the \(RI\) range \(1.40 \,RIU\) to \(1.48 \,RIU.\)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu W, Wang F, Liu C, Yang L, Liu Q, Su W, Lv J (2020) A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding. Results Opt 1:100004. https://doi.org/10.1016/j.rio.2020.100004

  2. Khanikar T, De M, Singh VK (2021) A review on infiltrated or liquid core fiber optic SPR sensors. In: Photonics and nanostructures —fundamentals and applications, vol 46, p 100945. https://doi.org/10.1016/j.photonics.2021.100945

  3. Shakya AK, Singh S (2021) Design of dual-polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum. Opt Commun 478:126372. https://doi.org/10.1016/j.optcom.2020.126372

  4. Yang H, Wang G, Lu Y, Yao J (2021) Highly sensitive refractive index sensor based on SPR with silver and titanium dioxide coating. Opt Quantum Electron 53:341. https://doi.org/10.1007/s11082-021-02981-1

  5. Butt M, Khonina S, Kazanskiy N (2021) Plasmonics: a necessity in the field of sensing-a review (invited). Fiber Integrat Opt 40:14–47. https://doi.org/10.1080/01468030.2021.1902590

  6. Liu Q, Ma Z, Wu Q (2020) The biochemical sensor based on liquid-core photonic crystal fiber filled with gold, silver, and aluminum. Opt Laser Technol 130:106363. https://doi.org/10.1016/j.optlastec.2020.106363

  7. Shakya AK, Singh S (2021) Design and analysis of dual-polarized Au and TiO2-coated photonic crystal fiber surface plasmon resonance refractive index sensor: an extraneous sensing approach. J Nanophotonics 15(1):016009

    Article  Google Scholar 

  8. Liu A, Wang J, Wang F, Su W, Yang L, Lv J, Fu G (2020) Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt Commun 464:125496. https://doi.org/10.1016/j.optcom.2020.125496

  9. Danlard, Akowuah EK (2021) Design and theoretical analysis of a dual-polarized quasi D-shaped plasmonic PCF microsensor for back-to-back measurement of refractive index and temperature. IEEE Sens J 21(8):9860 —9868

    Google Scholar 

  10. Shakya K, Singh S (2022) Design of novel Penta core PCF SPR RI sensor based on the fusion of IMD and EMD techniques for analysis of water and transformer oil. Measurement 188:110513. https://doi.org/10.1016/j.measurement.2021.110513

  11. Monfared YE (2020) Refractive index sensor based on surface plasmon resonance excitation in a D-shaped photonic crystal fiber coated by titanium nitride. Plasmonics 15:535–542. https://doi.org/10.1007/s11468-019-01072-y

  12. Liang H, Shen T, Feng Y, Liu H, Han W (2021) A D-shaped photonic crystal fiber refractive index sensor coated with graphene and zinc oxide. Sensors 21(1):71

    Article  Google Scholar 

  13. Chen DY, Zhao Y (2021) Review of optical hydrogen sensors based on metal hydrides: Recent developments and challenges. Opt Laser Technol 137:106808. https://doi.org/10.1016/j.optlastec.2020.106808

  14. Hasan MM, Barid M, Hossain MS, Sen S, Azad MM (2021) Large effective area with high power fraction in the core region and extremely low effective material loss-based photonic crystal fiber (PCF) in the terahertz (THz) wave pulse for different types of communication sectors. J Opt 50:681–688. https://doi.org/10.1007/s12596-021-00740-9

  15. Ramola A, Marwaha A, Singh S (2021) Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl Phys A 127:643. https://doi.org/10.1007/s00339-021-04785-2

  16. Popescu V, Sharma AK, Marques C (2021) Resonant interaction between a core mode and two complementary supermodes in a honeycomb PCF reflector-based SPR sensor. Optik 227:166121. https://doi.org/10.1016/j.ijleo.2020.166121

  17. Zhu M, Yang L, Lv J, Liu C, Li Q, Peng C, Li X, Chu PK (2021) Highly sensitive dual-core photonic crystal fiber based on a surface. Plasmonics 1:1–8. https://doi.org/10.1007/s11468-021-01543-1

  18. Yan X, Wang Y, Cheng T, Li S (2021) Photonic crystal fiber SPR liquid sensor based on elliptical detective channel. Micromachines 12(4):408

    Article  Google Scholar 

  19. Falah AS, Wong WR, Adikan FRM (2022) Single-mode eccentric-core D-shaped photonic crystal fiber surface plasmon resonance sensor. Opt Laser Technol 145:107474. https://doi.org/10.1016/j.optlastec.2021.107474

  20. Shakya AK, Singh S (2022) Design of biochemical biosensor based on transmission, absorbance, and refractive index. Biosens Bioelectron X 10:100089. https://doi.org/10.1016/j.biosx.2021.100089

  21. Society G (2021) Refractive index list of common household liquids, IGS, 01 January 2021. https://www.gemsociety.org/article/refractive-index-list-of-common-household-liquids/. [Accessed 01 Nov 2021].

  22. Otupiri R, Akowuah EK, Haxha S, Ademgil H, AbdelMalek F, Aggoun A (2014) A novel birefringent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J 6(4):6801711

    Article  Google Scholar 

  23. Gao D, Guan C, Wen Y, Zhong X, Yuan L (2014) Multi-hole fiber-based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt Commun 313:94–98. https://doi.org/10.1016/j.optcom.2013.10.015

  24. Osório H, Oliveira R, Aristilde S, Chesini G, Franco MAR (2017) Bragg gratings in surface-core fibers: refractive index and directional curvature sensing. Opt Fiber Technol 34:86–90. https://doi.org/10.1016/j.yofte.2017.01.007

  25. Dash N, Jha R (2014) Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photon Technol Lett 26(11):1092–1095

    Article  Google Scholar 

Download references

Acknowledgements

“This work is performed under the All India Council of Technical Education (AICTE), National Doctoral Fellowship (NDF). Authors are further thankful to AICTE for the AICTE NDF RPS project, sanction order no: File No.8-2/RIFD/RPS-NDF/Policy-1/2018-19 dated March 13, 2019”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Shakya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shakya, A.K., Singh, S. (2023). Gold-ZnO Coated Surface Plasmon Resonance Refractive Index Sensor Based on Photonic Crystal Fiber with Tetra Core in Hexagonal Lattice of Elliptical Air Holes. In: Muthusamy, H., Botzheim, J., Nayak, R. (eds) Robotics, Control and Computer Vision. Lecture Notes in Electrical Engineering, vol 1009. Springer, Singapore. https://doi.org/10.1007/978-981-99-0236-1_43

Download citation

Publish with us

Policies and ethics

Navigation