3D Reconstruction Methods from Multi-aspect TomoSAR Method: A Survey

  • Conference paper
  • First Online:
Robotics, Control and Computer Vision

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1009))

  • 329 Accesses

Abstract

This paper presents an investigation into the existing literature on the reconstruction of TomoSAR buildings and the 3D cloud TomoSAR point. Synthetic aperture radar tomography (TomoSAR) was widely used for urban buildings and a three- dimensional reconstruction of (3D). A tomograph image is filled with significant noise and fake targets. These TomoSAR point clouds mean a dataset that represent an object extracted from unwanted noise and a fake target to reconstruct a 3D model. This paper is for anyone who has recently worked in TomoSAR 3D building reconstruction and wants to grasp a lot of information regarding point cloud extraction. This paper reviews and assesses the various techniques for reconstructing 3D building TomoSAR point clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferro-Famil L, Huang Y, Pottier E (2016) Principles and applications of Polarimetric SAR tomography for the characterization of complex environments. Int Assoc Geodesy Symp 142(1–13):243–255

    Google Scholar 

  2. Tebaldini S, Ho Tong Minh D, Mariotti d’Alessandro M et al (2019) The status of technologies to measure forest biomass and structural properties: state of the art in SAR tomography of tropical forests. Surv Geophys 40:779–801

    Google Scholar 

  3. Blomberg E, Ferro-Famil L, Soja MJ, Ulander LMH, Tebaldini S (2018) Forest biomass retrieval from L- band SAR using tomographic ground backscatter removal. IEEE Geosci Remote Sens Lett 1–5

    Google Scholar 

  4. Frey O, Meier E (2011) 3-D time-domain SAR imaging of a forest using airborne multibaseline data at L-and P-bands. IEEE Trans Geosci Remote Sens 49:3660–3664

    Article  Google Scholar 

  5. Lombardini F, Cai F (2014) Temporal decorrelation-robust SAR tomography. IEEE Trans Geosci Remote Sens 52:5412–5421

    Article  Google Scholar 

  6. Aguilera E, Nannini M, Reigber A, Member S (2013) A data-adaptive compressed sensing approach to polarimetric SAR tomography of forested areas. IEEE Geosci Remote Sens Lett 10:543–547

    Article  Google Scholar 

  7. Li S, Yang J, Chen W, Ma X (2016) Overview of radar imaging technique and application based on compressive sensing theory. J Electron Inf Technol 38:495–508

    Google Scholar 

  8. Ma P, Lin H, Lan H, Chen F (2015) On the performance of reweighted L1 minimization for tomographic SAR imaging. IEEE Geosci Remote Sens Lett 12:895–899

    Article  Google Scholar 

  9. Wang Y, Zhu XX, Bamler R (2014) An efficient tomographic inversion approach for urban map** using meter resolution SAR image stacks. IEEE Geosci Remote Sens Lett 11:1250–1254

    Article  Google Scholar 

  10. Budillon A, Ferraioli G, Schirinzi G (2014) Localization performance of multiple scatterers in compressive sampling SAR tomog- raphy: results on COSMO-Skymed data. IEEE J Sel Top Appl Earth Obs Remote Sens 7:2902–2910

    Google Scholar 

  11. Aguilera E, Nannini M, Reigber A (2013) Wavelet-based compressed sensing for SAR tomography of forested areas. IEEE Trans Geosci Remote Sens 51:5283–5295

    Article  Google Scholar 

  12. **ng SQ, Li YZ, Dai DH, Wang XS (2013) Three-dimensional reconstruction of man-made objects using polarimetric tomographic SAR. IEEE Trans Geosci Remote Sens 51:3694–3705

    Article  Google Scholar 

  13. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53:4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  14. **ao XZ, Adam N, Brcic R, Bamler R (2009) Space-borne high resolution SAR tomography: experiments in urban environ ment using TS-X data. J Urban Remote Sens Event 2:1–8

    Google Scholar 

  15. Zhu XX, Bamler R (2010) Tomographic SAR inversion by L1-norm sensing approach. IEEE Trans Geosci Remote Sens 48:3839–3846

    Article  Google Scholar 

  16. Liang L, Li X, Ferro-Famil L, Guo H, Zhang L et al (2018) Urban area tomography using a sparse representation based two-dimensional spectral analysis technique. Remote Sens 10(2):109

    Google Scholar 

  17. Liu H, Pang L, Li F, Guo Z (2019) Hough transform and clustering for a 3-D building reconstruction with tomographic SAR point clouds. Sensors 19:5378

    Article  Google Scholar 

  18. Frey O, Magnard C, Ruegg M, Meier E (2009) Focusing of airborne synthetic aperture radar data from highly nonlinear flight tracks. IEEE Trans Geosci Remote Sens 47(6):1844–1858

    Google Scholar 

  19. Meng M, Zhang J, Wong YD, Au PH (2016) Effect of weather conditions and weather forecast on cycling travel behavior in Singapore. Int J Sustain Transp 10(9):773–780

    Article  Google Scholar 

  20. Budillon A, Crosetto M, Johnsy AC, Monserrat O, Krishnakumar V, Schirinzi G (2018) Comparison of persistent scatterer Interferometry and SAR tomography using sentinel-1 in urban environment. Remote Sens 10:1986

    Article  Google Scholar 

  21. Gini F, Lombardini F, Montanari M (2002) Layover solution in multibaseline SAR interferometry. Aerospace and electronic systems. IEEE Trans Aerosp Electron Syst 38:1344–1356

    Google Scholar 

  22. Basca CA, Talos M, Brad R (2005) Randomized Hough transform for ellipse detection with result clustering. In: EUROCON 2005-The international conference on “computer as a tool”, pp 1397–1400

    Google Scholar 

  23. Wang Y, Zhu X, Shi Y, Bamler R (2012) Operational TomoSAR processing using multitrack TerraSAR-X high resolution spotlight data stacks. In: Proceedings of the IEEE IGARSS, Munich,Germany

    Google Scholar 

  24. Zhu XX, Shahzad M (2014) Facade reconstruction using multiview spaceborne TomoSAR point clouds. IEEE Trans Geosci Remote Sens 52(6):3541–3552

    Google Scholar 

  25. Guo Z, Liu H, Pang L, Fang L, Dou W (2021) DBSCAN-based point cloud extraction for tomographic synthetic aperture radar (TomoSAR) three-dimensional (3D) building reconstruction. Int J Remote Sens 42(6):2327–2349

    Article  Google Scholar 

  26. Bohn FJ, Huth A (2017) The importance of forest structure to biodiversity–productivity relationships. R Soc Open Sci 4:160521

    Article  Google Scholar 

  27. D ˘anescu A, Albrecht AT, Bauhus J (2016) Structural diversity promotes productivity of mixed, uneven-aged forests in southwest- ern Germany. Oecologia 182:319–333

    Google Scholar 

  28. Toraño Caicoya A, Pardini M, Hajnsek I, Papathanassiou K (2015) Forest above-ground biomassestimation from vertical re- flectivity profiles at L-Band. IEEE Geosci Remote Sens Lett 12(12):2379–2383

    Google Scholar 

  29. Ho Tong Minh D, Ndikumana E, Vieilledent G, McKey D, Baghdadi N (2018) Potential value of combining ALOS PALSAR and Landsat-derived tree cover data for forest biomass retrieval in Madagascar. Remote Sens Environ 213:206–214

    Google Scholar 

  30. Le Toan T, Beaudoin A, Riom J, Guyoni D (1992) Relating forest biomass to SAR data. IEEE Trans Geosci Remote Sens Lett 30:403–411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tamesh Haldar or Arindam Basak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akhtar, N., Haldar, T., Basak, A., Ray, A.M., Chakravarty, D. (2023). 3D Reconstruction Methods from Multi-aspect TomoSAR Method: A Survey. In: Muthusamy, H., Botzheim, J., Nayak, R. (eds) Robotics, Control and Computer Vision. Lecture Notes in Electrical Engineering, vol 1009. Springer, Singapore. https://doi.org/10.1007/978-981-99-0236-1_39

Download citation

Publish with us

Policies and ethics

Navigation