Bioprospecting and Mechanisms of Cyanobacterial Hydrogen Production and Recent Development for Its Enhancement as a Clean Energy

  • Chapter
  • First Online:
Cyanobacterial Biotechnology in the 21st Century

Abstract

Energy security is a major concern for economic strength worldwide because of fossil resource depletion and rising costs. The synthesis of biohydrogen from cyanobacteria is a viable alternative clean and renewable energy source with significant viable potential. Cyanobacteria are highly relevant and valuable as prospective hydrogen producers because they produce hydrogen from water due to solar energy conversion. Furthermore, cyanobacteria have high photosynthetic efficiency and produce a large amount of biomass, which is used as a fourth-generation feedstock to produce biohydrogen. The yield of cyanobacterial biohydrogen has been improved in various ways with limited information in a systematic way. That’s why the current state of research in the field of cyanobacterial hydrogen production enhancement is discussed with earlier published reports in this chapter. The major aim of this chapter is to discuss cyanobacterial hydrogen production, characteristics and roles of nitrogenase and hydrogenase enzymes concerned with hydrogen production, the various mechanisms of hydrogen production, recent metabolic pathway developments, modern photobioreactor efficiency, new cyanobacterial molecular genetic engineering and synthetic cyanobacterial biology. Finally, the major limitations to more efficient cyanobacterial hydrogen production and improvements for future commercialisation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 189.89
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 189.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anwar M, Lou S, Chen L, Li H, Hu Z (2019) Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresour Technol 292:121972

    Article  CAS  PubMed  Google Scholar 

  • Aryal UK, Callister SJ, Mishra S, Zhang X, Shutthanandan JI, Angel TE, Sherman L (2013) Proteome analyses of strains ATCC 51142 and PCC 7822 of the diazotrophic cyanobacterium Cyanothece sp. under culture conditions resulting in enhanced H2 production. Appl Environ Microbiol 79:1070–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sust Energ Rev 31:158–173

    Article  CAS  Google Scholar 

  • Baebprasert W, Jantaro S, Khetkorn W, Lindblad P, Incharoensakdi A (2011) Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng 13:610–616

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay A, Stöckel J, Min H, Sherman LA, Pakrasi HB (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 1:1–7

    Article  CAS  Google Scholar 

  • Batista AP, Gouveia L, Marques PA (2018) Fermentative hydrogen production from microalgal biomass by a single strain of bacterium Enterobacter aerogenes–effect of operational conditions and fermentation kinetics. Renew Energy 119:203–209

    Article  CAS  Google Scholar 

  • Bolatkhan K, Kossalbayev BD, Zayadan BK, Tomo T, Veziroglu TN, Allakhverdiev SI (2019) Hydrogen production from phototrophic microorganisms: reality and perspectives. Int J Hydrog Energy 44:5799–5811

    Article  CAS  Google Scholar 

  • Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74:529–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britt RD, Rao G, Tao L (2020) Biosynthesis of the catalytic H-cluster of [FeFe] hydrogenase: the roles of the Fe–S maturase proteins HydE, HydF, and HydG. Chem Sci 11:10313–10323

    Article  PubMed  PubMed Central  Google Scholar 

  • Bundhoo MZ, Mohee R (2016) Inhibition of dark fermentative bio-hydrogen production: a review. Int J Hydrog Energy 41:6713–6733

    Article  CAS  Google Scholar 

  • Chatzitakis A, Nikolakaki E, Sotiropoulos S, Poulios I (2013) Hydrogen production using an algae photoelectrochemical cell. Appl Catal B Environ 142:161–168

    Article  Google Scholar 

  • Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  PubMed  Google Scholar 

  • Cournac L, Guedeney G, Peltier G, Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol Res 186:1737–1746

    Article  CAS  Google Scholar 

  • Das D, Khanna N, Dasgupta CN (2014) Biohydrogen production: fundamentals and technology advances. CRC Press/Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  • Dasgupta CN, Gilbert JJ, Lindblad P, Heidorn T, Borgvang SA, Skjanes K, Das D (2010) Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrog Energy 35:10218–10238

    Article  CAS  Google Scholar 

  • Deviram G, Mathimani T, Anto S, Ahamed TS, Ananth DA, Pugazhendhi A (2020) Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J Clean Prod 253:119770

    Article  CAS  Google Scholar 

  • Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Factories 4:1–11

    Article  Google Scholar 

  • Ekman M, Ow SY, Holmqvist M, Zhang X, van Wagenen J, Wright PC, Stensjo K (2011) Metabolic adaptations in a H2 producing heterocyst-forming cyanobacterium: potentials and implications for biological engineering. J Proteome Res 10:1772–1784

    Article  CAS  PubMed  Google Scholar 

  • Elbeshbishy E, Dhar BR, Nakhla G, Lee HS (2017) Critical review on inhibition of dark biohydrogen fermentation. Renew Sust Energ Rev 79:656–668

    Article  CAS  Google Scholar 

  • Ermakova M, Battchikova N, Richaud P, Leino H, Kosourov S, Isojärvi J, Aro EM (2014) Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120. Proc Natl Acad Sci 111:11205–11210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413

    Article  CAS  PubMed  Google Scholar 

  • Eroglu E, Melis A (2016) Microalgal hydrogen production research. Int J Hydrog Energy 41:12772–12798

    Article  CAS  Google Scholar 

  • Fedorov AS, Tsygankov AA, Rao KK, Hall DO (2001) Anabaena variabilis production of hydrogen by an mutant in a photobioreactor under aerobic outdoor conditions. In: Biohydrogen II. Pergamon, Amsterdam, pp 223–228

    Chapter  Google Scholar 

  • Geada P, Vasconcelos V, Vicente A, Fernandes B (2017) Microalgal biomass cultivation. In: Rastogi RP, Madamwar D, Pandey A (eds) Algal green chemistry recent progress in biotechnology. Elsevier, Amsterdam, pp 257–284

    Chapter  Google Scholar 

  • Ghirardi ML, Dubini A, Yu J, Maness PC (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61

    Article  CAS  PubMed  Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91

    Article  CAS  PubMed  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511

    Article  CAS  PubMed  Google Scholar 

  • Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52:21–29

    Article  CAS  PubMed  Google Scholar 

  • Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O (2007) Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up. Physiol Plant 131:10–21

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi JI, Kikuchi S, Kobayashi M, Kanno T, Shimizu T (2001) Modeling of pH response in continuous anaerobic acidogenesis by an artificial neural network. Biochem Eng J 9:199–204

    Article  CAS  Google Scholar 

  • Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sust Energ Rev 57:850–866

    Article  CAS  Google Scholar 

  • Jeffries TW, Timourian H, Ward RL (1978) Hydrogen production by Anabaena cylindrica: effects of varying ammonium and ferric ions, pH, and light. Appl Environ Microbiol 35:704–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kars G, GĂ¼ndĂ¼z U, Rakhely G, YĂ¼cel M, EroÄŸlu Ä°, Kovacs KL (2008) Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides OU 001. Int J Hydrog Energy 33:3056–3060

    Article  CAS  Google Scholar 

  • Kaushik MS, Srivastava M, Singh A, Mishra AK (2017) NtcA transcriptional factor: a global nitrogen regulator and connecting link between nitrogen metabolism and other crucial metabolisms. In: Plant and microbes in ever changing environment. Nova Science, Hauppauge, pp 101–127

    Google Scholar 

  • Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C (2017) Microalgal hydrogen production–a review. Bioresour Technol 243:1194–1206

    Article  CAS  PubMed  Google Scholar 

  • Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP (2021) [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 50:1668–1784

    Article  CAS  PubMed  Google Scholar 

  • Kosourov S, Leino H, Murukesan G, Lynch F, Sivonen K, Tsygankov AA, Allahverdiyeva Y (2014) Hydrogen photoproduction by immobilized N2-fixing cyanobacteria: understanding the role of the uptake hydrogenase in the long-term process. Appl Environ Microbiol 80:5807–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosourov S, Murukesan G, Seibert M, Allahverdiyeva Y (2017) Evaluation of light energy to H2 energy conversion efficiency in thin films of cyanobacteria and green alga under photoautotrophic conditions. Algal Res 28:253–263

    Article  Google Scholar 

  • Kourpa K, Manarolaki E, Lyratzakis A, Strataki V, Rupprecht F, Langer JD, Tsiotis G (2019) Proteome analysis of enriched heterocysts from two hydrogenase mutants from Anabaena sp. PCC 7120. Proteomics 19:1800332

    Article  CAS  Google Scholar 

  • Kroumov AD, Scheufele FB, Trigueros DEG, Modenes AN, Zaharieva M, Najdenski H (2017) Modeling and technoeconomic analysis of algae for bioenergy and coproducts. In: Algal green chemistry. Elsevier, Amsterdam, pp 201–241

    Chapter  Google Scholar 

  • Kumar GR, Chowdhary N (2016) Biotechnological and bioinformatics approaches for augmentation of biohydrogen production: a review. Renew Sust Energ Rev 56:1194–1206

    Article  CAS  Google Scholar 

  • Kumar GS, Kumari S, Reddy K, Bux F (2013) Trends in biohydrogen production: major challenges and state-of-the-art developments. Environ Technol 34:1653–1670

    Google Scholar 

  • Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumazawa T, Sato S, Kanenari D, Kunimatsu A, Hirose R, Matsuba S, Onodera JI (1994) Precursor of carthamin, a constituent of safflower. Chem Lett 23:2343–2344

    Article  Google Scholar 

  • Land H, Senger M, Berggren G, Stripp ST (2020) Current state of [FeFe]-hydrogenase research: biodiversity and spectroscopic investigations. ACS Catal 10:7069–7086

    Article  CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    Article  CAS  Google Scholar 

  • Lindberg P, Devine E, Stensjö K, Lindblad P (2012) HupW protease specifically required for processing of the catalytic subunit of the uptake hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120. Appl Environ Microbiol 78:273–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindblad P (2018) Hydrogen production using novel photosynthetic cell factories. Cyanobacterial hydrogen production: design of efficient organisms. In: Microalgal hydrogen production: achievements and perspectives. The Royal Society of Chemistry, London, pp 323–334

    Chapter  Google Scholar 

  • Lukajtis R, HoÅ‚owacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, KamiÅ„ski M (2018) Hydrogen production from biomass using dark fermentation. Renew Sust Energ Rev 91:665–694

    Article  CAS  Google Scholar 

  • Majidian P, Tabatabaei M, Zeinolabedini M, Naghshbandi MP, Chisti Y (2018) Metabolic engineering of microorganisms for biofuel production. Renew Sust Energ Rev 82:3863–3885

    Article  CAS  Google Scholar 

  • Malatinszky D, Steuer R, Jones PR (2017) A comprehensively curated genome-scale two-cell model for the heterocystous cyanobacterium Anabaena sp. PCC 7120. Plant Physiol 173:509–523

    Article  CAS  PubMed  Google Scholar 

  • Malek Shahkouhi A, Motamedian E (2020) Reconstruction of a regulated two-cell metabolic model to study biohydrogen production in a diazotrophic cyanobacterium Anabaena variabilis ATCC 29413. PLoS One 15:0227977

    Article  Google Scholar 

  • Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrog Energy 33:279–286

    Article  CAS  Google Scholar 

  • MirĂ³n AS, Gomez AC, Camacho FG, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. In: Progress in industrial microbiology. Elsevier, Amsterdam, pp 249–270

    Google Scholar 

  • Mona S, Kumar SS, Kumar V, Parveen K, Saini N, Deepak B, Pugazhendhi A (2020) Green technology for sustainable biohydrogen production (waste to energy): a review. Sci Total Environ 728:138481

    Article  CAS  PubMed  Google Scholar 

  • Mostafaeipour A, Khayyami M, Sedaghat A, Mohammadi K, Shamshirband S, Sehati MA, Gorakifard E (2016) Evaluating the wind energy potential for hydrogen production: a case study. Int J Hydrog Energy 41:6200–6210

    Article  CAS  Google Scholar 

  • Nagarajan D, Lee DJ, Kondo A, Chang JS (2017) Recent insights into biohydrogen production by microalgae–from biophotolysis to dark fermentation. Bioresour Technol 227:373–387

    Article  CAS  Google Scholar 

  • Nyberg M, Heidorn T, Lindblad P (2015) Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system. J Biotechnol 215:35–43

    Article  CAS  PubMed  Google Scholar 

  • Oey M, Sawyer AL, Ross IL, Hankamer B (2016) Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol J 14:1487–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oncel S, Kose A (2014) Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity. Bioresour Technol 151:265–270

    Article  CAS  PubMed  Google Scholar 

  • Pansook S, Incharoensakdi A, Phunpruch S (2019) Effects of the photosystem II inhibitors CCCP and DCMU on hydrogen production by the unicellular halotolerant cyanobacterium Aphanothece halophytica. Sci World J 2019:1030236

    Article  Google Scholar 

  • Pohorelic BK, Voordouw JK, Lojou E, Dolla A, Harder J, Voordouw G (2002) Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J Bacteriol 184:679–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720

    Article  CAS  PubMed  Google Scholar 

  • Poudyal RS, Tiwari I, Koirala AR, Masukawa H, Inoue K, Tomo T, VeziroÄŸlu TN (2015) Hydrogen production using photobiological methods. In: Compendium of hydrogen energy. Woodhead Publishing, Cambridge, pp 289–317

    Chapter  Google Scholar 

  • Puggioni V, Tempel S, Latifi A (2016) Distribution of hydrogenases in cyanobacteria: a phylum-wide genomic survey. Front Genet 7:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Rashid N, Rehman MSU, Memon S, Rahman ZU, Lee K, Han JI (2013) Current status, barriers and developments in biohydrogen production by microalgae. Renew Sust Energ Rev 22:571–579

    Article  CAS  Google Scholar 

  • Razu MH, Hossain F, Khan M (2019) Advancement of bio-hydrogen production from microalgae. In: Microalgae biotechnology for development of biofuel and wastewater treatment. Springer, Singapore, pp 423–462

    Chapter  Google Scholar 

  • Roumezi B, Avilan L, Risoul V, Brugna M, Rabouille S, Latifi A (2020) Overproduction of the Flv3B flavodiiron, enhances the photobiological hydrogen production by the nitrogen-fixing cyanobacterium Nostoc PCC 7120. Microb Cell Factories 19:1–10

    Article  Google Scholar 

  • Rumpel S, Siebel JF, Farès C, Duan J, Reijerse E, Happe T, Winkler M (2014) Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase. Energy Environ Sci 7:3296–3301

    Article  CAS  Google Scholar 

  • Sadler NC, Bernstein HC, Melnicki MR, Charania MA, Hill EA, Anderson LN, Wright AT (2016) Dinitrogenase-driven photobiological hydrogen production combats oxidative stress in Cyanothece sp. strain ATCC 51142. Appl Environ Microbiol 82:7227–7235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadvakasova AK, Kossalbayev BD, Zayadan BK, Bolatkhan K, Alwasel S, Najafpour MM, Allakhverdiev SI (2020) Bioprocesses of hydrogen production by cyanobacteria cells and possible ways to increase their productivity. Renew Sust Energ Rev 133:110054

    Article  CAS  Google Scholar 

  • Saratale GD, Kshirsagar SD, Saratale RG, Govindwar SP, Oh MK (2015) Fermentative hydrogen production using sorghum husk as a biomass feedstock and process optimization. Biotechnol Bioprocess Eng 20:733–743

    Article  CAS  Google Scholar 

  • Schipper K, Al Muraikhi M, Alghasal GSH, Saadaoui I, Bounnit T, Rasheed R, Barbosa MJ (2019) Potential of novel desert microalgae and cyanobacteria for commercial applications and CO2 sequestration. J Appl Phycol 31:2231–2243

    Article  CAS  Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekoai PT, Ouma CNM, Du Preez SP, Modisha P, Engelbrecht N, Bessarabov DG, Ghimire A (2019) Application of nanoparticles in biofuels: an overview. Fuel 237:380–397

    Article  CAS  Google Scholar 

  • Sevda S, Bhattacharya S, Reesh IMA, Bhuvanesh S, Sreekrishnan TR (2017) Challenges in the design and operation of an efficient photobioreactor for microalgae cultivation and hydrogen production. In: Biohydrogen production: sustainability of current technology and future perspective. Springer, New Delhi, pp 147–162

    Chapter  Google Scholar 

  • Sharma A, Arya SK (2017) Hydrogen from algal biomass: a review of production process. Biotechnol Rep 15:63–69

    Article  Google Scholar 

  • Shobana S, Kumar G, Bakonyi P, Saratale GD, NemestĂ³thy N, BĂ©lafi-BakĂ³ K, Chang JS (2017) A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. Bioresour Technol 244:1341–1348

    Article  CAS  PubMed  Google Scholar 

  • Show KY, Yan Y, Zong C, Guo N, Chang JS, Lee DJ (2019) State of the art and challenges of biohydrogen from microalgae. Bioresour Technol 289:121747

    Article  CAS  PubMed  Google Scholar 

  • da Silva Veras T, Mozer TS, da Silva CA (2017) Hydrogen: trends, production and characterization of the main process worldwide. Int J Hydrog Energy 42:2018–2033

    Article  Google Scholar 

  • SkjĂ¥nes K, Andersen U, Heidorn T, Borgvang SA (2016) Design and construction of a photobioreactor for hydrogen production, including status in the field. J Appl Phycol 28:2205–2223

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava N, Srivastava M, Kushwaha D, Gupta VK, Manikanta A, Ramteke PW, Mishra PK (2017) Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). Bioresour Technol 238:552–558

    Article  CAS  PubMed  Google Scholar 

  • Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Happe T (2009) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci 106:17331–17336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sveshnikov DA, Sveshnikova NV, Rao KK, Hall DO (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiol Lett 147:297–301

    Article  CAS  Google Scholar 

  • Torimura M, Miki A, Wadano A, Kano K, Ikeda T (2001) Electrochemical investigation of cyanobacteria Synechococcus sp. PCC7942-catalyzed photoreduction of exogenous quinones and photoelectrochemical oxidation of water. J Electroanal Chem 496:21–28

    Article  CAS  Google Scholar 

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    Article  CAS  PubMed  Google Scholar 

  • Troshina O, Serebryakova L, Sheremetieva M, Lindblad P (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int J Hydrog Energy 27:1283–1289

    Article  CAS  Google Scholar 

  • Unni JK, Govindappa P, Das LM (2017) Development of hydrogen fuelled transport engine and field tests on vehicles. Int J Hydrog Energy 42:643–651

    Article  Google Scholar 

  • Vargas SR, dos Santos PV, Zaiat M, do Carmo Calijuri M (2018) Optimization of biomass and hydrogen production by Anabaena sp. (UTEX 1448) in nitrogen-deprived cultures. Biomass Bioenergy 111:70–76

    Article  CAS  Google Scholar 

  • Voloshin RA, Rodionova MV, Zharmukhamedov SK, Veziroglu TN, Allakhverdiev SI (2016) Biofuel production from plant and algal biomass. Int J Hydrog Energy 41:17257–17273

    Google Scholar 

  • Wang Y, Yang H, Zhang X, Han F, Tu W, Yang W (2020) Microalgal hydrogen production. Small Methods 4:1900514

    Article  CAS  Google Scholar 

  • Wegelius A, Khanna N, Esmieu C, Barone GD, Pinto F, Tamagnini P, Lindblad P (2018) Generation of a functional, semisynthetic [FeFe]-hydrogenase in a photosynthetic microorganism. Energy Environ Sci 11:3163–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittenberg G, Sheffler W, Darchi D, Baker D, Noy D (2013) Accelerated electron transport from photosystem I to redox partners by covalently linked ferredoxin. Phys Chem Chem Phys 15:19608–19614

    Article  CAS  PubMed  Google Scholar 

  • Wutthithien P, Lindblad P, Incharoensakdi A (2019) Improvement of photobiological hydrogen production by suspended and immobilized cells of the N2-fixing cyanobacterium Fischerella muscicola TISTR 8215. J Appl Phycol 31:3527–3536

    Article  CAS  Google Scholar 

  • Xu Q, Yooseph S, Smith HO, Venter JC (2005) Development of a novel recombinant cyanobacterial system for hydrogen production from water. In: Contractor-grantee workshop III, p 63

    Google Scholar 

  • Yin Y, Wang J (2018) Pretreatment of macroalgal Laminaria japonica by combined microwave-acid method for biohydrogen production. Bioresour Technol 268:52–59

    Article  CAS  PubMed  Google Scholar 

  • Zebda A, Alcaraz JP, Vadgama P, Shleev S, Minteer SD, Boucher F, Martin DK (2018) Challenges for successful implantation of biofuel cells. Bioelectrochemistry 124:57–72

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yang H, Guo L (2016) Enhancing photo-fermentative hydrogen production performance of Rhodobacter capsulatus by disrupting methylmalonate-semialdehyde dehydrogenase gene. Int J Hydrog Energy 41:190–197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, Department of Botany Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, and DST-FIST for providing the necessary research facilities. The University Grants Commission, Government of India, New Delhi, is also acknowledged for providing Senior Research Fellowship (SRF) and ISLS, ISC, BHU, for financial assistance.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Kumar Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R.P., Yadav, P., Kumar, I., Kumar, A., Gupta, R.K. (2023). Bioprospecting and Mechanisms of Cyanobacterial Hydrogen Production and Recent Development for Its Enhancement as a Clean Energy. In: Neilan, B., Passarini, M.R.Z., Singh, P.K., Kumar, A. (eds) Cyanobacterial Biotechnology in the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-99-0181-4_7

Download citation

Publish with us

Policies and ethics

Navigation