Soil Microflora and Their Interaction with Plants Under Changing Climatic Scenarios

  • Chapter
  • First Online:
Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate

Abstract

Microbes are considered one of the most important living organisms in agriculture, and changing climatic scenarios influence microbial diversity highly impacting overall agriculture. Soil microbial diversity is highly altered with changes in soil moisture, types of vegetation, soil reaction, soil organic matter, etc. Climate change results in increased concentrations of carbon dioxide in the environment that largely influences the soil microbial diversities and rhizosphere-dwelling microorganisms. All these ultimately impact the soil health vis-à-vis productivity of the crops grown in the soil. Upscaling of plant mutualism and elevation in the CO2 level usually helped in gaining the total microorganisms’ biomass and the richness of mycorrhizal fungi. Besides these, an increase in temperature also influences microbes. Environmental, as well as soil heating due to climate change, also result in an abundance of nematodes in the soil and a decrease in the beneficial microbes. Micro-microbe interaction is another important concern. Soil microflora and their dynamics in the soil environment must be taken into serious consideration as this plays a huge role in agricultural production systems. In this chapter, efforts are made to highlight the distribution of soil microflora and their interactions under changing climatic scenarios; the influence of changing climatic scenarios on plant-microbial along with soil-microbial interactions; and micro-microbe interactions. A proper understanding of these might help in planning sustainable agricultural production systems under changing climatic scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AMF:

Arbuscular mycorrhizal fungi

ANN:

Artificial neural network

BNF:

Biological nitrogen fixation

FACE:

Free air carbon dioxide enrichment

GAM:

Generalized additive models

GLM:

Generalized linear model

SDMs:

Species distribution models

VAM:

Vesicular arbuscular mycorrhizae

References

  • Aanderud ZT, Lennon JT (2011) Validation of heavy-water stable isotope probing for the characterization of rapidly responding soil bacteria. Appl Environ Microbiol 77(13):4589–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilera P, MarĂ­n C, Oehl F, Godoy R, Borie F, Cornejo P (2017) Selection of aluminum tolerant cereal genotypes strongly influences the arbuscular mycorrhizal fungal communities in an acidic Andosol. Agric Ecosyst Environ 246:86–93

    Article  CAS  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Allison FE (1973) Soil organic matter and its role in crop production. Elsevier, Amsterdam, p 637

    Google Scholar 

  • Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc Nat Acad Sci 105(supplement_1):11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderegg WRL, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B et al (2015) Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol 208:674–683

    Article  PubMed  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 1473

    Google Scholar 

  • Bakkenes M, Alkemade J, Ihle F, Leemans R, Latour J (2002) Assessing the effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Chang Biol 8:390–407

    Article  Google Scholar 

  • Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochem 31(7–8):697–710

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186:250–269

    Article  Google Scholar 

  • Bell C, McIntyre N, Cox S, Tissue D, Zak J (2008) Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan Desert grassland. Microbial Ecol 56(1):153–167

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Berg G, Rybakova D, Grube M, Köberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67:995–1002

    Article  CAS  PubMed  Google Scholar 

  • Beringer JE, Brewin N, Johnston AW, Schulman HM, Hopwood DA (1979) The Rhizobium—legume symbiosis. Proc Royal Soc London Series B Biol Sci 204(1155):219–233

    CAS  Google Scholar 

  • Bharati PL, Baulaigue R, Matheron R (1982) Degradation of cellulose by mixed cultures of fermentative bacteria and anaerobic sulfur bacteria. Zentralblatt fĂĽr Bakteriologie Mikrobiologie und Hygiene: I. Abt Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 3(4):466–474

    Article  CAS  Google Scholar 

  • Blankinship JC, Niklaus PA, Hungate BA (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165(3):553–565

    Article  PubMed  Google Scholar 

  • Borowik A, Wyszkowska J (2016) Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant Soil Environ 62:250–255

    Article  CAS  Google Scholar 

  • Brewin NJ (2010) Root nodules (Legume-Rhizobium symbiosis). Encyclopedia of life sciences. John Wiley and Sons, Ltd, Chichester, p 2010

    Google Scholar 

  • Briones MJI, McNamara NP, Poskitt J, Crow SE, Ostle NJ (2014) Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils. Glob Chang Biol 20(9):2971–2982

    Article  PubMed  Google Scholar 

  • Casanovas EM, Barassi CA, Sueldo RJ (2002) Azospiriflum inoculation mitigates water stress effects in maize seedlings. Cereal Res Commun 30(3):343–350

    Article  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76(4):999–1007

    Article  CAS  PubMed  Google Scholar 

  • Chen IC, Hill JK, OhlemĂĽller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Citernesi AS, Fortuna P, Filippi C, Bagnoli G, Giovannetti M (1996) The occurrence of antagonistic bacteria in Glomus mosseae pot cultures. Agronomie 16(10):671–677

    Article  Google Scholar 

  • Cowan AK, Cairns AL, Bartels-Rahm B (1999) Regulation of abscisic acid metabolism: towards a metabolic basis for abscisic acid-cytokinin antagonism. J Exp Bot 50(334):595–603

    Article  CAS  Google Scholar 

  • Cregger MA, Sanders NJ, Dunn RR, Classen AT (2014) Microbial communities respond to experimental warming, but site matters. PeerJ 2:e358

    Article  PubMed  PubMed Central  Google Scholar 

  • Cregger MA, Schadt CW, McDowell NG, Pockman WT, Classen AT (2012) Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl Environ Microbiol 78(24):8587–8594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crumpacker DW, Box EO, Hardin ED (2001) Implications of climatic warming for conservation of native trees and shrubs in Florida. Conserv Biol 15:1008–1020

    Article  Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD et al (2001) Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. BioSci 51(9):723–734

    Article  Google Scholar 

  • DeAngelis KM, Pold G, TopçuoÄźlu BD, van Diepen LT, Varney RM, Blanchard JL et al (2015) Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 6:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Dey P, Mahapatra BS, Juyal VK, Pramanick B, Negi MS, Paul J, Singh SP (2021a) Flax processing waste—a low-cost, potential biosorbent for treatment of heavy metal, dye and organic matter contaminated industrial wastewater. Ind Crop Prod 174:114195. https://doi.org/10.1016/j.indcrop.2021.114195

    Article  CAS  Google Scholar 

  • Dey P, Mahapatra BS, Pramanick B, Kumar A, Negi MS, Paul J, Shukla DK, Singh SP (2021b) Quality optimization of flax fibre through durational management of water retting technology under sub-tropical climate. Ind Crop Prod 162:113277. https://doi.org/10.1016/j.indcrop.2021.113277

    Article  Google Scholar 

  • Diaz H, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Chang 59:1–4

    Article  Google Scholar 

  • DiGregorio BE (2015) Climate change affecting microbes in North America soils. Am Soc Microbiol. https://www.microbemagazine.org/index.php?option=com_contentandview=articleandid=6497:climatechangeaffectingmicrobesinnorthamericasoils

  • Dobrowski SZ et al (2013) The climate velocity of the contiguous United States during the 20th century. Glob Change Biol 19:241–251

    Article  Google Scholar 

  • Dutta H, Dutta A (2016) The microbial aspect of climate change. Energy Ecol Environ 1(4):209–232

    Article  Google Scholar 

  • Eastburn DM, McElrone AJ, Bilgin DD (2011) Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathol 60(1):54–69

    Article  Google Scholar 

  • Engler R, Guisan A (2009) MigClim: predicting plant distribution and dispersal in a changing climate. Divers Distribution 15(4):590–601

    Article  Google Scholar 

  • Evans C, Thomson PG, Davidson AT, Bowie AR, Van Den Enden R, Witte H, Brussaard CP (2011) Potential climate change impacts on microbial distribution and carbon cycling in the Australian Southern Ocean. Deep Sea Res II Top Stud Oceanogr 58(21–22):2150–2161

    Article  CAS  Google Scholar 

  • Feeley KJ, Silman MR (2010) Land-use and climate change effects on population size and extinction risk of Andean plants. Glob Change Biol 16:3215–3222

    Article  Google Scholar 

  • Figueiredo MV, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40(1):182–188

    Article  Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Article  Google Scholar 

  • Foster RC (1988) Microenvironments of soil microorganisms. Biol Fert Soil 6(3):189–203

    Article  Google Scholar 

  • Ganesan T, Rajarajan MD (2011) Feather degrading actinomycetes: a biotechnological approach to environmental clean-up. Department of Plant Sci Tagore Arts College, Puducherry 605:008

    Google Scholar 

  • Ghorbani-Nasrabadi R, Greiner R, Alikhani HA, Hamedi J, Yakhchali B (2013) Distribution of actinomycetes in different soil ecosystems and effect of media composition on extracellular phosphatase activity. J Soil Sci Plant Nutr 13(1):223–236

    Google Scholar 

  • Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol 419(1):64–77

    Article  CAS  PubMed  Google Scholar 

  • Gschwendtner S, Engel M, Lueders T, Buegger F, Schloter M (2016) Nitrogen fertilization affects bacteria utilizing plant-derived carbon in the rhizosphere of beech seedlings. Plant Soil 407(1):203–215

    Article  CAS  Google Scholar 

  • Han XM, Wang RQ, Jian L, Wang MC, Juan ZHOU, Guo WH (2007) Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China. J Environ Sci 19(10):1228–1234

    Article  Google Scholar 

  • Heinemeyer A, Fitter AH (2004) Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner. J Exp Bot 55:525–534

    Article  CAS  PubMed  Google Scholar 

  • Hesammi E et al (2014) The role of soil organisms on soil stability (a review). Int J Curr Life Sci 4:10328–10334

    Google Scholar 

  • Hill J, Collingham YC, Thomas CD, Blakeley DS, Fox R, Moss D, Huntley B (2001) Impacts of landscape structure on butterfly range expansion. Ecol Lett 4:313–321

    Article  Google Scholar 

  • IPCC CWT (2007) Climate change 2007: synthesis report. Contribution of working groups I, II, and III to the fourth assessment report of the intergovernmental panel on climate change, pp 104

    Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayasekara S, Ratnayake R (2019) Microbial cellulases: an overview and applications. Cellulose 22

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:6395

    Article  Google Scholar 

  • Kadmon R, Farber O, Danin A (2003) A systematic analysis of factors affecting the performance of climatic envelope models. Ecol Appl 13:853–867

    Article  Google Scholar 

  • Kaisermann A, Maron PA, Beaumelle L, Lata JC (2015) Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Appl Soil Ecol 86:158–164

    Article  Google Scholar 

  • Kumar M, Mitra S, Mazumdar SP, Majumdar B, Saha AR, Singh SR, Pramanick B, Gaber A, Alsanie WF, Hossain A (2021) Improvement of soil health and system productivity through crop diversification and residue incorporation under jute-based different crop** systems. Agronomy 11:1622. https://doi.org/10.3390/agronomy11081622

    Article  CAS  Google Scholar 

  • Kumar M, Zeyad MT, Choudhary P, Paul S, Chakdar H, Rajawat MVS (2020) Thiobacillus. In Beneficial Microbes in Agro-Ecology, Academic Press, pp 545–557

    Google Scholar 

  • Kumar N, Mukherjee I, Sarkar B, Paul RK (2017) Degradation of tricyclazole: effect of moisture, soil type, elevated carbon dioxide and Blue Green Algae (BGA). J Hazard Mater 321:517–527

    Article  CAS  PubMed  Google Scholar 

  • Laik R, Kumara BH, Pramanick B, Singh SK, Nidhi AM, Gaber A, Hossain A (2021) Labile soil organic matter pools are influenced by 45 years of applied farmyard manure and mineral nitrogen in the wheat—pearl millet crop** system in the sub-tropical condition. Agronomy 11:2190. https://doi.org/10.3390/agronomy11112190

    Article  CAS  Google Scholar 

  • Lartey RT (2006) Dynamics of soil flora and fauna in biological control of soil inhabiting plant pathogens. Plant Pathol J 5(2):125–142

    Article  Google Scholar 

  • Lindström K, Mousavi SA (2020) Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnol 13(5):1314–1335. https://doi.org/10.1111/1751-7915.13517

    Article  CAS  Google Scholar 

  • Majumder B, Mandal B, Bandyopadhyay PK (2008) Soil organic carbon pools and productivity in relation to nutrient management in a 20-year-old rice–berseem agroecosystem. Biol Fert Soil 44(3):451–461

    Article  Google Scholar 

  • Manish K, Telwala Y, Nautiyal DC, Pandit MK (2016) Modelling the impacts of future climate change on plant communities in the Himalaya: a case study from Eastern Himalaya, India. Model Earth Syst Environ 2(2):1–12

    Article  Google Scholar 

  • Marilley L, Hartwig UA, Aragno M (1999) Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microbial Ecol 38(1):39–49

    Article  CAS  Google Scholar 

  • Marsh G (2011) Slime moulds prosper on the microfarm. Nature. https://doi.org/10.1038/news.2011.27

  • McCalley CK, Sparks JP (2009) Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326(5954):837–840

    Article  CAS  PubMed  Google Scholar 

  • MEA (2005) Millennium ecosystem assessment. Synthesis. Island Press, Washington, D.C, Ecosystems and Human Well-Being

    Google Scholar 

  • Mhete M, Eze PN, Rahube TO, Akinyemi FO (2020) Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Sci African 7:e00246

    Article  Google Scholar 

  • Mohammadi K, Heidari G, Khalesro S, Sohrabi Y (2011) Soil management, microorganisms and organic matter interactions: a review. African J Biotechnol 10:19840–19849. https://doi.org/10.5897/AJBX11.006

    Article  CAS  Google Scholar 

  • Montealegre CM, Van Kessel C, Blumenthal JM, Hur HG, Hartwig UA, Sadowsky MJ (2000) Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Glob Change Biol 6(5):475–482

    Article  Google Scholar 

  • Mougi A (2016) The roles of amensalistic and commensalistic interactions in large ecological network stability. Sci Rep 6:29929. https://doi.org/10.1038/srep29929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negi PS (2012) Climate change, alpine treeline dynamics and associated terminology: focus on northwestern Indian Himalaya. Trop Ecol 53:371–374

    Google Scholar 

  • Pabbi S (2015) Blue green algae: a potential biofertilizer for rice. In: The algae world, Springer, Dordrecht, pp 449–465

    Google Scholar 

  • Panigrahy S, Anitha D, Kimothi MM, Singh SP (2010) Timberline change detection using topographic map and satellite imagery. Trop Ecol 51:87–91

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  CAS  PubMed  Google Scholar 

  • Pearson RG, Dawson TP, Berry PM, Harrison PA (2002) SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecol Model 154(3):289–300

    Article  Google Scholar 

  • Peng C (2000) From static biogeographical model to dynamic global vegetation model: a global perspective on modelling vegetation dynamics. Ecol Model 135:33–54

    Article  CAS  Google Scholar 

  • Pieters AJ (1927) Green manuring. Willey, New York

    Google Scholar 

  • Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Høye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJC, van der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–1358

    Article  CAS  PubMed  Google Scholar 

  • Pramanick B, Brahmachari K, Ghosh A, Zodape ST (2014) Foliar nutrient management through Kappaphycus and Gracilaria saps in rice-potato-greengram crop sequence. J Sci Ind Res 73:613–617

    Google Scholar 

  • Pramanick B, Brahmachari K, Ghosh D, Bera PS (2018) Influence of foliar application seaweed (Kappaphycus and Gracilaria) saps in rice (Oryza sativa)–potato (Solanum tuberosum)–blackgram (Vigna mungo) sequence. Indian J Agron 63(1):7–12

    Google Scholar 

  • Pramanick B, Brahmachari K, Kar S, Mahapatra BS (2020) Can foliar application of seaweed sap improve the quality of rice grown under rice–potato–greengram crop sequence with better efficiency of the system? J Appl Phycol 32:3377–3386. https://doi.org/10.1007/s10811-020-02150-z

    Article  CAS  Google Scholar 

  • Prescott LM, Harley JP, Klein AD (2005) Microorganism interaction and microbial ecology In Microbiology. Microbiology. McGraw-Hill, New York, pp 577–613

    Google Scholar 

  • Puri GS (1945a) Some fossil leaves of Litsea lanuginosa Nees from the Karewa beds at Liddarmarg, Pir Panjal, Kashmir. J Ind Bot Soc 24:95–100

    Google Scholar 

  • Puri GS (1945b) The genus Quercus in the Karewa deposits of Kashmir, with remarks on the oak forests of the Kashmir Valley during the Pleistocene. Proc Ind Acad Sci Sect B 22:232–256

    Article  Google Scholar 

  • Raizada MB, Sahni KC (1960) Living Indian Gymnosperms. Part 1 (Cycades, Ginkgoales and Coniferales). Ind For Rec 5L1–150

    Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annual Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Rodrigo A, Recous S, Neel C, Mary B (1997) Modelling temperature and moisture effects on C–N transformations in soils: comparison of nine models. Ecol Model 102(2–3):325–339

    Article  CAS  Google Scholar 

  • Rousk J, Brookes PC, BĂĄĂĄth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75(6):1589–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhil K, Ahmad A, Iqbal M, Tripathy BC (2015) Photosynthesis and growth responses of mustard (Brassica juncea L. cv. Pusa Bold) plants to free air carbon dioxide enrichment (FACE). Protoplasma 252(4):935–946

    Article  CAS  PubMed  Google Scholar 

  • Schortemeyer M, Hartwig UA, Hendrey GR, Sadowsky MJ (1996) Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE). Soil Biol Biochem 28(12):1717–1724

    Article  CAS  Google Scholar 

  • Selim SM, Zayed MS (2017) Microbial interactions and plant growth. In Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 1–15

    Google Scholar 

  • Sessitsch A, Howieson JG, Perret X, Antoun H, Martinez-Romero E (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21(4):323–378

    Article  CAS  Google Scholar 

  • Shail S, Dubey RC (1997) Seasonal changes in microbial community in relation to edaphic factors in banj-oak and chir-pine forests of Kumaun Himalaya. Himalayan Microbial Diversity 381–391

    Google Scholar 

  • Sheppard CS, Burns BR, Stanley MC (2014) Predicting plant invasions under climate change: are species distribution models validated by field trials? Glob Change Biol 20(9):2800–2814

    Article  Google Scholar 

  • Shi J (2013) Decomposition and nutrient release of different cover crops in organic farm systems. Dissertations and Theses in Natural Resources 75. https://digitalcommons.unl.edu/natresdiss/75

  • Singh R, Pramanick B, Singh AP, Neelam KS, Kumar A, Singh G (2017) Bio-efficacy of Fenoxaprop-P-Ethyl for grassy weed control in onion and its residual effect on succeeding maize crop. Indian J Weed Sci 49(1):63–66. https://doi.org/10.5958/0974-8164.2017.00015.6

    Article  Google Scholar 

  • Singh VK, Gautam P, Nanda G, Dhaliwal SS, Pramanick B, Meena SS, Alsanie WF, Gaber A, Sayed S, Hossain A (2021) Soil test based fertilizer application improves productivity, profitability and nutrient use efficiency of rice (Oryza sativa L.) under direct seeded condition. Agronomy 11:1756. https://doi.org/10.3390/agronomy11091756

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Academic Press, San Diego, p 605

    Google Scholar 

  • Srivastava S, Chakraborty A, Suthindhiran K (2022) Microbial adaptation to climate change and its impact on sustainable development. Relationship Between Microbes and the Environment for Sustainable Ecosystem Services 1:85–105

    Article  Google Scholar 

  • Steinweg JM, Dukes JS, Wallenstein MD (2012) Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biol Biochem 55:85–92

    Article  CAS  Google Scholar 

  • Stocker BD, Roth R, Joos F, Spahni R, Steinacher M, Zaehle S et al (2013) Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat Clim Chang 3(7):666–672

    Article  CAS  Google Scholar 

  • Stone MM, Weiss MS, Goodale CL, Adams MB, Fernandez IJ, German DP, Allison SD (2012) Temperature sensitivity of soil enzyme kinetics under N-fertilization in two temperate forests. Glob Change Biol 18(3):1173–1184

    Article  Google Scholar 

  • Suman J, Rakshit A, Ogireddy SD, Singh S, Gupta C, Chandrakala J (2022) Microbiome as a key player in sustainable agriculture and human health. Front Soil Sci 12

    Google Scholar 

  • Sun Y, Sun Y, Yao S, Akram MA, Hu W, Dong L et al (2021) Impact of climate change on plant species richness across drylands in China: from past to present and into the future. Ecol Indic 132:108288

    Article  Google Scholar 

  • Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicenter. PLoS One 8:e57103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Chang 50:77–109

    Article  CAS  Google Scholar 

  • Thomas BT, Rajan R, Saranyamol ST, Bhagya MV (2017) Influence of pH on the diversity of soil algae. J Glob Biosci 6(6):5088–5094

    Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Lavorel S, AraĂşjo MB (2005a) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeo 14:347–357

    Article  Google Scholar 

  • Thuiller W, Lavorel S, AraĂşjo MB, Sykes MT, Prentice IC (2005b) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci 102:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tresede KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164(2):347–355

    Article  Google Scholar 

  • Trivedi P, Delgado-Baquerizo M, Trivedi C, Hamonts K, Anderson IC, Singh BK (2017) Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biol Biochem 111:10–14

    Article  CAS  Google Scholar 

  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18:607–621

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Mattupalli C, Eversole K, Leach JE (2021) Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytol 230:2129–2147

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11(12):1351–1363

    Article  PubMed  Google Scholar 

  • Van der Putten WH (2012) Climate change, aboveground-belowground interactions, and species’ range shifts. Annu Rev Ecol Evol Syst 43(365):2012

    Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21(5):573

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitousek PM, Menge DN, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc Lond Ser B Biol Sci 368(1621):20130119. https://doi.org/10.1098/rstb.2013.0119

    Article  CAS  Google Scholar 

  • Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature 528(7580):69–76

    Article  CAS  PubMed  Google Scholar 

  • Whitaker J, Ostle N, Nottingham AT, Ccahuana A, Salinas N, Bardgett RD et al (2014) Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient. J Ecol 102(4):1058–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadava AK, Sharma YK, Dubey B, Singh J, Singh V, Bhutiyani MR, Yadav RR, Misra KG (2017) Altitudinal tree line dynamics of Himalayan pine in western Himalaya, India. Quat Int 444:44–52

    Article  Google Scholar 

  • Yuvaraj M, Ramasamy M (2020) Role of fungi in agriculture. In: Mirmajlessi SM, Radhakrishnan R (eds) Biostimulants in plant science. IntechOpen. https://doi.org/10.5772/intechopen.89718

    Chapter  Google Scholar 

  • Yuwono T, Handayani D, Soedarsono J (2005) The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust J Agric Res 56(7):715–721

    Article  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev: MMBR 63(4):968–989. https://doi.org/10.1128/MMBR.63.4.968-989.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Pramanick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pramanick, B. et al. (2023). Soil Microflora and Their Interaction with Plants Under Changing Climatic Scenarios. In: Mathur, P., Kapoor, R., Roy, S. (eds) Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0030-5_2

Download citation

Publish with us

Policies and ethics

Navigation