scCoRR: A Data-Driven Self-correction Framework for Labeled scRNA-Seq Data

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14955))

Included in the following conference series:

Abstract

Single-cell RNA sequencing (scRNA-seq) data serves as the foundation for many studies investigating cellular heterogeneity. Numerous methodologies and evaluation metrics within single-cell research are intertwined with cell labels. While annotating cell labels often requires prior biological knowledge for clustering, this is frequently approached from a clustering perspective rather than considering the heterogeneity of individual cells. Building upon this, we introduce a data-driven self-correction framework for labeled scRNA-seq data, termed scCoRR. This framework utilizes a supervised approach trained from partially reliable anchor cells, eliminating the need for additional prior reference datasets or marker genes. Subsequently, a supervised deep neural network is trained with cross-entropy loss and a contrastive regularization term to predict the types of the remaining cells. During this process, the labels of some cells are corrected from one cell type to another, a phenomenon that can also be elucidated from various biological perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., Batzoglou, S.: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14(4), 414–416 (2017)

    Article  Google Scholar 

  2. Dong, R., Yuan, G.C.: GiniClust3: a fast and memory-efficient tool for rare cell type identification. BMC Bioinform. 21, 1–7 (2020)

    Article  Google Scholar 

  3. Zheng, R., Li, M., Liang, Z., Wu, F.X., Pan, Y., Wang, J.: SinNLRR: a robust subspace clustering method for cell type detection by non-negative and low-rank representation. Bioinformatics 35(19), 3642–3650 (2019)

    Article  Google Scholar 

  4. Chen, Y., Zheng, R., Liu, J., Li, M.: scMLC: an accurate and robust multiplex community detection method for single-cell multi-omics data. Brief. Bioinform. 25(2), bbae101 (2024)

    Google Scholar 

  5. Tian, T., Wan, J., Song, Q., Wei, Z.: Clustering single-cell RNA-seq data with a model-based deep learning approach. Nat. Mach. Intell. 1(4), 191–198 (2019)

    Article  Google Scholar 

  6. Wan, H., Chen, L., Deng, M.: scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data. Bioinformatics 38(6), 1575–1583 (2022)

    Article  Google Scholar 

  7. Ciortan, M., Defrance, M.: GNN-based embedding for clustering scRNA-seq data. Bioinformatics 38(4), 1037–1044 (2022)

    Article  Google Scholar 

  8. Baron, M., et al.: A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell Syst. 3(4), 346–360 (2016)

    Article  Google Scholar 

  9. Aibar, S., et al.: SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14(11), 1083–1086 (2017)

    Article  Google Scholar 

  10. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)

    Article  Google Scholar 

  11. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 824–836 (2018)

    Article  Google Scholar 

  12. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. ar**v preprint ar**v:1802.03426 (2018)

  13. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  14. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134, 19–67 (2005)

    Article  MathSciNet  Google Scholar 

  15. Liu, J., Zeng, W., Kan, S., Li, M., Zheng, R.: CAKE: a flexible self-supervised framework for enhancing cell visualization, clustering and rare cell identification. Brief. Bioinform. 25(1), bbad475 (2024)

    Google Scholar 

  16. Adam, M., Potter, A.S., Potter, S.S.: Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development. Development 144(19), 3625–3632 (2017)

    Google Scholar 

  17. Schaum, N., et al.: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris: The Tabula Muris Consortium. Nature 562(7727), 367 (2018)

    Article  Google Scholar 

  18. Muraro, M.J., et al.: A single-cell transcriptome atlas of the human pancreas. Cell Syst. 3(4), 385–394 (2016)

    Article  Google Scholar 

  19. Tosches, M.A., Yamawaki, T.M., Naumann, R.K., Jacobi, A.A., Tushev, G., Laurent, G.: Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360(6391), 881–888 (2018)

    Article  Google Scholar 

  20. Young, M.D., et al.: Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361(6402), 594–599 (2018)

    Google Scholar 

  21. **e, Z., et al.: Gene set knowledge discovery with Enrichr. Curr. Protocols 1(3), e90 (2021)

    Article  MathSciNet  Google Scholar 

  22. Uhlig, R., et al.: Carboxypeptidase A1 (CPA1) immunohistochemistry is highly sensitive and specific for Acinar Cell Carcinoma (ACC) of the pancreas. Am. J. Surg. Pathol. 46(1), 97–104 (2022)

    Article  Google Scholar 

  23. Merz, S., et al.: Single-cell profiling of GP2-enriched pancreatic progenitors to simultaneously create acinar, ductal, and endocrine organoids. Theranostics 13(6), 1949 (2023)

    Article  Google Scholar 

  24. Qadir, M.M.F., et al.: Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche. Proc. Natl. Acad. Sci. 117(20), 10876–10887 (2020)

    Article  Google Scholar 

  25. Bydoun, M., et al.: S100A10, a novel biomarker in pancreatic ductal adenocarcinoma. Mol. Oncol. 12(11), 1895–1916 (2018)

    Article  Google Scholar 

  26. Wang, J., et al.: CD52 is a prognostic biomarker and associated with tumor microenvironment in breast cancer. Front. Genet. 11, 578002 (2020)

    Article  Google Scholar 

  27. Smyth, P., Sasiwachirangkul, J., Williams, R., Scott, C.J.: Cathepsin S (CTSS) activity in health and disease-a treasure trove of untapped clinical potential. Mol. Aspects Med. 88, 101106 (2022)

    Article  Google Scholar 

  28. Rasmussen, M., et al.: Stroma-specific gene expression signature identifies prostate cancer subtype with high recurrence risk. NPJ Precis. Oncol. 8(1), 48 (2024)

    Article  Google Scholar 

  29. Wang, J.J., et al.: Single-cell transcriptome dissection of the toxic impact of Di (2-ethylhexyl) phthalate on primordial follicle assembly. Theranostics 11(10), 4992 (2021)

    Article  Google Scholar 

  30. Quah, F.X., Hemberg, M.: SC3s: efficient scaling of single cell consensus clustering to millions of cells. BMC Bioinform. 23(1), 536 (2022)

    Article  Google Scholar 

  31. Chen, L., Wang, W., Zhai, Y., Deng, M.: Deep soft K-means clustering with self-training for single-cell RNA sequence data. NAR Genomics Bioinform. 2(2), lqaa039 (2020)

    Google Scholar 

  32. Han, W., et al.: Self-supervised contrastive learning for integrative single cell RNA-seq data analysis. Brief. Bioinform. 23(5), bbac377 (2022)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant No. 62202503, 62225209, Hunan Provincial Natural Science Foundation of China under Grant No. 2023JJ40780.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqing Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Y., Liu, J., Li, M., Zheng, R. (2024). scCoRR: A Data-Driven Self-correction Framework for Labeled scRNA-Seq Data. In: Peng, W., Cai, Z., Skums, P. (eds) Bioinformatics Research and Applications. ISBRA 2024. Lecture Notes in Computer Science(), vol 14955. Springer, Singapore. https://doi.org/10.1007/978-981-97-5131-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5131-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5130-3

  • Online ISBN: 978-981-97-5131-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation