stEnTrans: Transformer-Based Deep Learning for Spatial Transcriptomics Enhancement

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2024)

Abstract

The spatial position of cells within tissues and organs is crucial for the manifestation of their specific functions. Spatial transcriptomics technology enables comprehensive measurement of the gene expression patterns in tissues while retaining spatial information. However, current popular spatial transcriptomics techniques either have shallow sequencing depth or low resolution. We present stEnTrans, a deep learning method based on Transformer architecture that provides comprehensive predictions for gene expression in unmeasured or unexpectedly lost areas and enhances gene expression in original and imputed spots. Utilizing self-supervised learning approach, stEnTrans establishes proxy tasks on gene expression profiles without requiring additional data, mining intrinsic features of the tissues as supervisory information. We evaluate stEnTrans on six datasets and the results indicate superior performance in enhancing spatial resolution and predicting gene expression in unmeasured areas compared to other deep learning and traditional interpolation methods. Additionally, stEnTrans can also help the discovery of spatial patterns in spatial transcriptomics and enrich to more biologically significant pathways. Our source code is available at https://github.com/shuailinxue/stEnTrans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moses, L., Pachter, L.: Museum of spatial transcriptomics. Nat. Methods 19(5), 534–546 (2022)

    Article  Google Scholar 

  2. Li, Q., Zhang, X., et al.: Spatial transcriptomics for tumor heterogeneity analysis. Front. Genet. 13(2), 906158 (2022)

    Article  Google Scholar 

  3. Lohoff, T., Ghazanfar, S., et al.: Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nat. Biotechnol. 40(1), 74–85 (2022)

    Article  Google Scholar 

  4. Hasel, P., Rose, I.V.L., et al.: Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24(10), 1475–1487 (2021)

    Article  Google Scholar 

  5. Asp, M., Bergenstråhle, J., et al.: Spatially resolved transcriptomes-next generation tools for tissue exploration. BioEssays 42(10), 1900221 (2020)

    Article  Google Scholar 

  6. Rao, N., Clark, S., et al.: Bridging genomics and tissue pathology: 10x genomics explores new frontiers with the visium spatial gene expression solution. Genetic Eng. Biotechnol. News 40(2), 50–51 (2020)

    Article  Google Scholar 

  7. Thrane, K., Eriksson, H., et al.: Spatially resolved transcriptomics enables dissection of genetic heterogeneity in stage III cutaneous malignant melanoma. Can. Res. 78(20), 5970–5979 (2018)

    Article  Google Scholar 

  8. **g, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 4037–4058 (2020)

    Article  Google Scholar 

  9. He, Y., Tang, X., et al.: ClusterMap for multi-scale clustering analysis of spatial gene expression. Nat. Commun. 12(1), 5909 (2021)

    Article  Google Scholar 

  10. Janesick, A., Shelansky, R., et al.: High resolution map** of the breast cancer tumor microenvironment using integrated single cell, spatial and in situ analysis of FFPE tissue. Nat. Commun. 14(1), 5353 (2023)

    Article  Google Scholar 

  11. Li, X., Min, W., et al.: TransVCOX: bridging transformer encoder and pre-trained VAE for robust cancer multi-omics survival analysis. In: 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1254–1259 (2023)

    Google Scholar 

  12. Vaswani, A., Shazeer, N., et al.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 14, 1–11 (2017)

    Google Scholar 

  13. Dosovitskiy, A., Beyer, L., et al.: An image is worth 16 \(\times \) 16 words: Transformers for image recognition at scale. In: International Conference on Learning Representations, pp. 1–22 (2021)

    Google Scholar 

  14. He, K., Zhang, X., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Zhao, Y., Wang, K., et al.: DIST: spatial transcriptomics enhancement using deep learning. Briefings Bioinform. 24(2), bbad013 (2023)

    Google Scholar 

  16. Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10(10), 1521–1527 (2001)

    Google Scholar 

  17. Zhao, E., Stone, M.R., et al.: Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39(11), 1375–1384 (2021)

    Article  Google Scholar 

  18. Jian, H., Coleman, K., et al.: Deciphering tumor ecosystems at super resolution from spatial transcriptomics with tesla. Cell Syst. 14(5), 404–417 (2023)

    Article  Google Scholar 

  19. Zhang, D., Schroeder, A., et al.: Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology. Nat. Biotechnol. 1–6 (2024). https://doi.org/10.1038/s41587-023-02019-9

  20. Andersson, A., Lundeberg, J.: sepal: identifying transcript profiles with spatial patterns by diffusion-based modeling. Bioinformatics 37(17), 2644–2650 (2021)

    Article  Google Scholar 

  21. Raudvere, U., Kolberg, L., et al.: g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47(W1), W191–W198 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the National Natural Science Foundation of China (No. 62262069), in part by the Yunnan Fundamental Research Projects under Grants (202201AT070469, 202301BF070001-019) and the Yunnan Talent Development Program - Youth Talent Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwen Min .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 444 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, S., Zhu, F., Wang, C., Min, W. (2024). stEnTrans: Transformer-Based Deep Learning for Spatial Transcriptomics Enhancement. In: Peng, W., Cai, Z., Skums, P. (eds) Bioinformatics Research and Applications. ISBRA 2024. Lecture Notes in Computer Science(), vol 14954. Springer, Singapore. https://doi.org/10.1007/978-981-97-5128-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5128-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5127-3

  • Online ISBN: 978-981-97-5128-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation