Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 308))

  • 5 Accesses

Abstract

This review explores the utilization of Finite Element Method (FEM) modelling in the field of bone biomechanics. It emphasizes the crucial significance of bone biomechanics within the field of medical research for therapeutic applications. The versatility of finite element method (FEM) is demonstrated in its application to biomechanical investigations, clinical applications, and disease modelling. Nevertheless, this study also acknowledges and discusses the obstacles and potential avenues for further exploration within the discipline. The discussion revolves around the careful management of model complexity and computing efficiency, the need for accurate material characterization, the importance of interdisciplinary collaboration, and the ethical considerations involved. In its whole, the review illustrates the significant role of finite element modelling (FEM) in advancement of bone biomechanics research and its practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 154.07
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roesler, H.: The history of some fundamental concepts in bone biomechanics. J. Biomech. 20(11–12), 1025–1034 (1987)

    Article  Google Scholar 

  2. Roberts, W.E., Huja, S., Roberts, J.A.: Bone modeling: biomechanics, molecular mechanisms, and clinical perspectives. Seminar. Orthodont. 10(2), 123–161 (2004)

    Article  Google Scholar 

  3. Turner, C.H.: Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos. Int. 13(2), 97–104 (2002)

    Article  Google Scholar 

  4. Beaupied, H., Lespessailles, E., Benhamou, C.-L.: Evaluation of macrostructural bone biomechanics. Joint Bone Spine 74(3), 233–239 (2007)

    Article  Google Scholar 

  5. Keyak, J.H., Meagher, J.M., Skinner, H.B., Mote, C.D.: Automated three-dimensional finite element modelling of bone: a new method. J. Biomed. Eng. 12(5), 389–397 (1990)

    Article  Google Scholar 

  6. Parashar, S.K., Sharma, J.K.: A review on application of finite element modelling in bone biomechanics. Perspect. Sci. 8, 696–698 (2016)

    Article  Google Scholar 

  7. Brandi, M.L.: Microarchitecture, the key to bone quality. Rheumatology 48(suppl. 4), iv3–iv8 (2009)

    Google Scholar 

  8. Rho, J.-Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of Bone. Med. Eng. Phys. 20(2), 92–102 (1998)

    Article  Google Scholar 

  9. Elise, F., Morgan, G.U.: Bone mechanical properties in healthy and diseased states. Annu. Rev. Biomed. Eng. 20(1), 119–143 (2018)

    Google Scholar 

  10. Mavrogenis, R.D.A.F.: Biology of implant osseointegration. J. Musculoskeletal Neuronal Interact. 61–71 (2009)

    Google Scholar 

  11. María, B., Guglielmotti, D.G.: Research on implants and osseointegration. Periodontology 2000, 178–189 (2019)

    Google Scholar 

  12. Hamdan, S., Alghamdi, J.A.: The development and future of dental implants. Dent. Mater. J. 167–172 (2022)

    Google Scholar 

  13. Dieter, D., Bosshardt, V.C.: Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontology 2000, 22–40 (2016)

    Google Scholar 

  14. Masahiro Maruyama, C.R.: Modulation of the inflammatory response and bone healing. Front. Endocrinol. (2020)

    Google Scholar 

  15. Mohammad, S., Ghiasi, J.C.: Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep. 6, 87–100 (2017)

    Google Scholar 

  16. Werner Winter, D.K.: Micromotion of dental implants: basic mechanical considerations. J. Med. Eng. (2013)

    Google Scholar 

  17. Gerstenfeld, T.A.: Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 45–54 (2015)

    Google Scholar 

  18. Bente Langdahl, S.F.: Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Therap. Adv. Musculoskeletal Dis. 8, 225–235 (2016)

    Google Scholar 

  19. MS, J.S.-H.-R.: Encyclopedia of Nanotechnology. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-017-9780-1

  20. Lijun Wang, X.Y.: Mechanical regulation of bone remodeling. Bone Res. (2022)

    Google Scholar 

  21. El-Anwar, M.I., M.M.-Z.-M.: Load transfer on dental implants and surrounding bones. Austral. J. Basic Sci. 551–560 (2012)

    Google Scholar 

  22. Samira Faegh, S.M.: Load transfer along the bone–dental implant interface. J. Biomechan. 43(9), 1761–1770 (2010)

    Google Scholar 

  23. Dincer Bozkaya, S.M.: Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite element analysis. J. Prosthetic Dentistry 92(6), 523–530 (2004)

    Google Scholar 

  24. Trivedi, S.: Finite element analysis: a boon to dentistry. J. Oral Biol. Craniofacial Surg. 4(3), 200–203 (2014)

    Google Scholar 

  25. Máyra Andressa, R.V., Piccioni, E.A.: Application of the finite element method in Dentistry. Rev. Sul-Brasil. Odontol. 369–377 (2013)

    Google Scholar 

  26. Viceconti, M., Bellingeri, L., Cristofolini, L., Toni, A.: A comparative study on different methods of automatic mesh generation of human femurs. Med. Eng. Phys. 20(1), 1–10 (1998)

    Article  Google Scholar 

  27. Austman, R.L., Milner, J.S., Holdsworth, D.W., Dunning, C.E.: The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone. J. Biomech. 41(15), 3171–3176 (2008)

    Article  Google Scholar 

  28. Kluess, D., Souffrant, R., Mittelmeier, W., Wree, A., Schmitz, K.-P., Bader, R.: A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation. Comput. Methods Prog. Biomed. 95(1), 23–30 (2009)

    Article  Google Scholar 

  29. Mughal, U.N., Khawaja, H.A., Moatamedi, M.: Finite element analysis of human femur bone. Int. J. Multiphys. 9(2), 101–108 (2015)

    Article  Google Scholar 

  30. Natali, A.N., Meroi, E.A.: A review of the biomechanical properties of bone as a material. J. Biomed. Eng. 11(4), 266–276 (1989)

    Article  Google Scholar 

  31. Hambli, R.: Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Front. Bioeng. Biotechnol 2 (2014)

    Google Scholar 

  32. Papini, M., Zdero, R., Schemitsch, E.H., Zalzal, P.: The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. J. Biomech. Eng. 129(1), 12–19 (2006)

    Article  Google Scholar 

  33. Lai, D.T.H., Begg, R.K., Palaniswami, M.: Computational Intelligence in gait research: a perspective on current applications and future challenges. IEEE Trans. Inf Technol. Biomed. 13(5), 687–702 (2009)

    Article  Google Scholar 

  34. Guiotto, A., Sawacha, Z., Guarneri, G., Avogaro, A., Cobelli, C.: 3D finite element model of the diabetic neuropathic foot: a gait analysis driven approach. J. Biomech. 47(12), 3064–3071 (2014)

    Article  Google Scholar 

  35. Christensen, R.: Analysis of Variance, Design and Regression. Chapman and Hall (1996)

    Google Scholar 

  36. Carpena, F.L., Tayo, L.L.: Finite element analysis of ACL reconstruction-compatible knee implant design with bone graft component. Computation 11(8), 151 (2023)

    Article  Google Scholar 

  37. Lewis, G.S., Mischler, D., Wee, H., Reid, J.S., Varga, P.: Finite element analysis of fracture fixation. Curr. Osteoporos. Rep. 19, 403–416 (2021)

    Article  Google Scholar 

  38. Lee, Y., Ogihara, N., Lee, T.: Assessment of finite element models for prediction of osteoporotic fracture. J. Mech. Behav. Biomed. Mater. 97, 312–320 (2019)

    Article  Google Scholar 

  39. Viceconti, M., Qasim, M., Bhattacharya, P., Imhauser, C.W., Monte, F.D.: Multiscale modelling of the musculoskeletal system: review of state of the art methods and future directions. Proc. Inst. Mech. Eng. 233(3), 347–378 (2019)

    Google Scholar 

  40. Bansod, Y.D., Kebbach, M., Kluess, D., Bader, R., van Rienen, U.: Finite element analysis of bone remodelling with piezoelectric effects using an open-source framework. Biomech. Model. Mechanobiol. 20(3), 1147–1166 (2021)

    Article  Google Scholar 

  41. Wang, R., Wu, Z.: Recent advancement in finite element analysis of spinal interbody cages: a review. Front. Bioeng. Biotechnol. 11 (2023)

    Google Scholar 

  42. Yan, Z., et al.: Experimentally characterizing the spatially varying anisotropic mechanical property of cancellous bone via a Bayesian calibration method. J. Mech. Behav. Biomed. Mater. 138, 105643 (2023)

    Article  Google Scholar 

  43. Brekelmans, W.A., Poort, H.W., Slooff, T.J.: A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop. Scand. 43(5), 301–317 (1972)

    Article  Google Scholar 

  44. Cronin, D.S., Watson, B., Khor, F., Gierczycka, D., Malcolm, S.: Cortical bone continuum damage mechanics constitutive model with stress triaxiality criterion to predict fracture initiation and pattern. Front. Bioeng. Biotechnol. 10 (2022)

    Google Scholar 

  45. Giddings, V.L., King, M.T.: Challenges in patient-specific modeling: estimation of volumetric density from clinical imaging and the impact of the precision and resolution of 3D models in finite element simulations. J. Biomech. 73, 131–137 (2018)

    Google Scholar 

  46. Zadpoor, A.A.: Patient-specific bone modeling and its potential for orthopedic surgery planning, bone functional adaptation, and bone regeneration. Mater. Today 18(1), 66–73 (2015)

    Google Scholar 

  47. González-Carbonell, R.A., Ortiz-Prado, A., Cisneros-Hidalgo, Y.A., Alpizar-Aguirre, A.: Bone remodeling simulation of subject-specific model of tibia under torque. In: Braidot, A., Hadad, A. (eds.) VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014. IP, vol. 49, pp. 305–308. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13117-7_79

    Chapter  Google Scholar 

  48. Hambli, R., Katerchi, H., Benhamou, C.-L.: Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech. Model. Mechanobiol. 10(1), 133–145 (2010)

    Article  Google Scholar 

  49. Guha, I., Zhang, X., Rajapakse, C.S., Chang, G., Saha, P.K.: Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling. Med. Phys. 49(6), 3886–3899 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, K., Tiwari, A. (2024). Finite Element Modelling in Bones: A Review. In: Tiwari, A., Ray, P.K., Sardana, N., Kumar, R. (eds) Proceedings of the International Conference on Fundamental and Industrial Research on Materials. iConFIRM 2023. Springer Proceedings in Physics, vol 308. Springer, Singapore. https://doi.org/10.1007/978-981-97-4557-9_8

Download citation

Publish with us

Policies and ethics

Navigation