A Piezoelectric Dam** Support for the Vibration Suppression of Rotors

  • Conference paper
  • First Online:
2023 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2023) Proceedings (APISAT 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1050))

Included in the following conference series:

  • 99 Accesses

Abstract

Elastic supports are widely used in flexible rotors of aero-engines. The principal function of elastic support is to provide the rotor with reasonable stiffness, on one hand to balance the inertia force of the rotor, on the other hand to reduce the stress on the shaft. To further suppress the excessive vibration when crossing the critical speed, dampers are generally mounted on the support. Piezoelectric materials have the advantages of strong electromechanical coupling capability and wide bandwidth. When the thickness of piezoelectric material is comparable to that of the substrate structure, it exhibits good dam** performance. The main drawback is that piezoelectric materials cannot withstand too much loads. In this study, we propose the concept of a piezoelectric dam** support for suppressing rotor vibration. The elastic support structure, distributed with piezoelectric materials, is utilized solely for generating dam** rather than providing stiffness. An S-shaped elastic ring is designed to enhance the electromechanical coupling effect. The attached piezoelectric patches are grouped and interconnected with the synchronized switch dam** on inductance (SSDI) to dissipate the vibration energy. The purpose of this work is to study the feasibility of the proposed piezoelectric dam** support. To do that, the following works are carried out: (1) An elastic ring support based on S-shaped spring structure is designed, which ensures both the uniformity of radial stiffness and the rotationally periodic symmetry of strain distribution; (2) a numerical simulation is conducted for the rotor system to evaluate the dam** performance. Results show that the novel dam** support has high electromechanical coupling factor, and the dam** effect is considerable for the rotor system. Towards engineering applications, the piezoelectric dam** support can be installed in areas where deformation is suitable, and it can function in parallel with traditional elastic supports that primarily provide stiffness. Moreover, in contrast to the squeeze film damper, this dam** support is oil-free.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palazzolo, A.B., Lin, R.R., Alexander, R.M., Kascak, A.F., Montague, J.: Test and Theory for Piezoelectric Actuator-Active Vibration Control of Rotating machinery (1991)

    Google Scholar 

  2. Palazzolo, A.B., Jagannathan, S., Kascak, A.F., Montague, G.T., Kiraly, L.J.: Hybrid Active Vibration Control of Rotorbearing Systems Using Piezoelectric Actuators (1993)

    Google Scholar 

  3. Simoes, R.C., Steffen, V., Jr., Der Hagopian, J., Mahfoud, J.: Modal active vibration control of a rotor using piezoelectric stack actuators. J. Vib. Control 13(1), 45–64 (2007)

    Article  Google Scholar 

  4. Becker, F.B., Heindel, S., Rinderknecht, S.: Active vibration isolation of a flexible rotor being subject to unbalance excitation and gyroscopic effect using H _ ∞ H∞-optimal control. In: Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, pp. 1727–1739. Springer International Publishing (2015)

    Google Scholar 

  5. Becker, F.B., Sehr, M.A., Rinderknecht, S.: Vibration isolation for parameter-varying rotor systems using piezoelectric actuators and gain-scheduled control. J. Intell. Mater. Syst. Struct. 28(16), 2286–2297 (2017)

    Article  Google Scholar 

  6. Jungblut, J., Fischer, C., Rinderknecht, S.: Active vibration control of a gyroscopic rotor using experimental modal analysis. Bull. Polish Acad. Sci. Tech. Sci. (2021)

    Google Scholar 

  7. Zhang, S., Wu, J., Jungblut, J., Rinderknecht, S.: Vibration control for the flexible rotor with piezoelectric bearings based on the mixed sensitivity robust controller. J. Phys. Conf. Ser. 1905(1), 012002 (2021). IOP Publishing

    Google Scholar 

  8. Jungblut, J., Fischer, C., Rinderknecht, S.: System identification of a gyroscopic rotor throughout rotor-model-free control using the frequency domain LMS. IFAC-PapersOnLine 55(25), 217–222 (2022)

    Article  Google Scholar 

  9. He, Y., Chen, X., Liu, Z., Qin, Y.: Piezoelectric self-sensing actuator for active vibration control of motorized spindle based on adaptive signal separation. Smart Mater. Struct. 27(6), 065011 (2018)

    Article  Google Scholar 

  10. He, Y., Chen, X., Liu, Z., Chen, Y.: Active vibration control of motorized spindle based on mixed H∞/Kalman filter robust state feedback control. J. Vib. Control 25(6), 1279–1293 (2019)

    Article  MathSciNet  Google Scholar 

  11. Zheng, L., He, Y., Fan, L., Cao, H., Chen, X.: Semi-active vibration control of the motorized spindle using a self-powered SSDV technique: simulation and experimental study. Automatika 63(3), 511–524 (2022)

    Article  Google Scholar 

  12. Atzrodt, H., Mayer, D., Melz, T.: Reduction of bearing vibrations with shunt dam**. In: Proc. 16th Intl. Congress on Sound and Vib (2009)

    Google Scholar 

  13. He, H., Tan, X., He, J., Zhang, F., Chen, G.: A novel ring-shaped vibration damper based on piezoelectric shunt dam**: theoretical analysis and experiments. J. Sound Vib. 468, 115125 (2020)

    Article  Google Scholar 

  14. Hu, Y., Li, L., Wu, Y., Fan, Y.: Feasibility analysis of the rotor elastic support with piezoelectric dam**. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86076, p. V08BT26A007. American Society of Mechanical Engineers (2022)

    Google Scholar 

  15. Yu, F.A.N., Yu, H.U., Yaguang, W.U., Lin, L.I.: Mechanism of interconnected synchronized switch dam** for vibration control of blades. Chinese J. Aeronaut. (2023)

    Google Scholar 

  16. Lu, K., He, L., Zhang, Y.: Experimental study on vibration reduction characteristics of gear shafts based on ISFD installation position. Shock Vibr. (2017)

    Google Scholar 

  17. Yan, W., He, L., Deng, Z., Jia, X.: Experimental research on suppressing unbalanced vibration of rotor by integral squeeze film damper. Int. J. Turbo Jet-Eng. (2021). https://doi.org/10.1515/tjj-2021-0015

  18. Richard, C., Guyomar, D., Audigier, D., Bassaler, H.: Enhanced semi-passive dam** using continuous switching of a piezoelectric device on an inductor. In: Smart Structures and Materials 2000: Dam** and Isolation, vol. 3989, pp. 288–299. SPIE (2000)

    Google Scholar 

  19. Ji, H., Qiu, J., Nie, H., Cheng, L.: Semi-active vibration control of an aircraft panel using synchronized switch dam** method. Int. J. Appl. Electromagnet Mech 46(4), 879–893 (2014)

    Article  Google Scholar 

  20. Yan, L., Bao, B., Guyomar, D., Lallart, M.: Periodic structure with interconnected nonlinear electrical networks. J. Intell. Mater. Syst. Struct. 28(2), 204–229 (2017)

    Article  Google Scholar 

  21. Wu, Y., Li, L., Fan, Y., Liu, J., Gao, Q.: A linearised analysis for structures with synchronized switch dam**. IEEE Access 7, 133668–133685 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work is financially supported by Aeronautical Science Foundation of China (20220015051002), the Major Projects of Aero-engines and Gas Tur-bines (2019-IV-023-0091 and J2022-IV-0005), and Advanced Jet Propulsion Creativity Center (HKCX2022-01-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaguang Wu .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 A. Material Properties of PZT-5H

$$ \left[ {{\textbf{c}}^{\text{E}} } \right] = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {126} & {79.5} & {84.1} \\ {79.5} & {126} & {84.1} \\ {84.1} & {84.1} & {117} \\ \end{array} } & {\begin{array}{*{20}c} {\,} & {\,} & {\,} \\ {\,} & {\,} & {\,} \\ {\,} & {\,} & {\,} \\ \end{array} } \\ {\begin{array}{*{20}c} {\,} & {\,} & {\,} \\ {\,} & {\,} & {\,} \\ {\,} & {\,} & {\,} \\ \end{array} } & {\begin{array}{*{20}c} {23} & {\,} & {\,} \\ {\,} & {23} & {\,} \\ {\,} & {\,} & {23.25} \\ \end{array} } \\ \end{array} } \right]{\text{GPa}}\,\left[ {\textbf{e}} \right] = \left[ {\begin{array}{*{20}c} \begin{gathered} \begin{array}{*{20}c} {\,} \\ {\,} \\ {\,} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\,} \\ { - 17} \\ {\,} \\ \end{array} \hfill \\ \end{gathered} & \begin{gathered} \begin{array}{*{20}c} {\,} \\ {\,} \\ {\,} \\ \end{array} \hfill \\ \begin{array}{*{20}c} { - 17} \\ {\,} \\ {\,} \\ \end{array} \hfill \\ \end{gathered} & \begin{gathered} \begin{array}{*{20}c} {10} \\ {10} \\ { - 25} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\,} \\ {\,} \\ {\,} \\ \end{array} \hfill \\ \end{gathered} \\ \end{array} } \right]{\text{C/m}}^{2} $$
$$ \left[ {{\varvec{\upvarepsilon }}^{\text{S}} } \right] = \left[ {\begin{array}{*{20}c} {1700\varepsilon_0 } & {\,} & {\,} \\ {\,} & {1700\varepsilon_0 } & {\,} \\ {\,} & {\,} & {1793.8\varepsilon_0 } \\ \end{array} } \right],\varepsilon_0 = 8.85{\text{pF/m}} $$

The direction of the above matrix is determined according to IEEE standard on piezoelectricity, 1988: 1–x, 2–y, 3–z, 4–yz, 5–xz, 6–xy.

1.2 B. Parameters of Rotor System

Table 1. Geometric parameters of rotor system.
Table 2. Material parameters of rotor system.
Table 3. Finite element model parameters of rotor system.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Y., Fan, Y., Wu, Y., Li, L. (2024). A Piezoelectric Dam** Support for the Vibration Suppression of Rotors. In: Fu, S. (eds) 2023 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2023) Proceedings. APISAT 2023. Lecture Notes in Electrical Engineering, vol 1050. Springer, Singapore. https://doi.org/10.1007/978-981-97-3998-1_97

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-3998-1_97

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-3997-4

  • Online ISBN: 978-981-97-3998-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation