Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 38 Accesses

Abstract

This chapter presents recent advancements in quantitative error estimates, specifically providing concrete error bounds for boundary value problems in partial differential equations. These error estimates are crucial for obtaining explicit eigenvalue bounds. A primary focus is on the a priori error estimation based on the hypercircle method (i.e., the Prager–Synge theorem), offering a novel approach for projection error estimation in the analysis of eigenvalue problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 38.51
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ainsworth, M., & Vejchodskỳ, T. (2014). Robust error bounds for finite element approximation of reaction–diffusion problems with non-constant reaction coefficient in arbitrary space dimension. Computer Methods in Applied Mechanics and Engineering, 281, 184–199.

    Google Scholar 

  2. Boffi, D., Brezzi, F., & Fortin, M. (2013). Mixed finite element methods and applications (Vol. 44). Springer.

    Google Scholar 

  3. Braess, D.: Finite elements: Theory, fast solvers, and applications in elasticity theory. Cambridge University Press.

    Google Scholar 

  4. Brezzi, F., & Fortin, M. (1991). Mixed and hybrid finite element methods. Springer.

    Book  Google Scholar 

  5. Carstensen, C., & Funken, S. (2000). Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods. East West Journal of Numerical Mathematics, 8(3), 153–176.

    MathSciNet  Google Scholar 

  6. Fix, G., & Strang, G. (1973). An analysis of the finite element method. Englewood Cliffs, NY: Prentice-Hall.

    Google Scholar 

  7. Girault, V., & Raviart, P. (2012). Finite element methods for Navier-Stokes equations: theory and algorithms (Vol. 5). Springer Science & Business Media (2012)

    Google Scholar 

  8. Grisvard, P. (2011). Elliptic problems in nonsmooth domains. Society for Industrial and Applied Mathematics.

    Google Scholar 

  9. Guermond, J., & Ern, A. (2021). Finite elements II: Galerkin approximation, elliptic and mixed PDEs. Springer.

    Google Scholar 

  10. Kikuchi, F., & Liu, X. (2007). Estimation of interpolation error constants for the P0 and P1 triangular finite element. Computer Methods in Applied Mechanics and Engineering, 196, 3750–3758.

    Article  MathSciNet  Google Scholar 

  11. Kikuchi, F., & Saito, H. (2007). Remarks on a posteriori error estimation for finite element solutions. Journal of Computational and Applied Mathematics, 199, 329–336.

    Article  MathSciNet  Google Scholar 

  12. Kobayashi, K. (2011). On the interpolation constants over triangular elements (in Japanese). Kyoto University Research Information Repository, 1733, 58–77.

    Google Scholar 

  13. Kobayashi, K. (2015). On the interpolation constants over triangular elements. Application of Mathematics, 110–124. http://eudml.org/doc/287821

  14. Li, Q., & Liu, X. (2018). Explicit finite element error estimates for nonhomogeneous Neumann problems. Applications of Mathematics, 63(3), 367–379.

    Article  MathSciNet  Google Scholar 

  15. Liu, X. (2020). Explicit eigenvalue bounds of differential operators defined by symmetric positive semi-definite bilinear forms. Journal of Computational and Applied Mathematics, 371, 112666.

    Article  MathSciNet  Google Scholar 

  16. Liu, X., & Kikuchi, F. (2010). Analysis and estimation of error constants for interpolations over triangular finite elements. Journal of Mathematical Sciences (University of Tokyo), 17, 27–78.

    MathSciNet  Google Scholar 

  17. Liu, X., Nakao, M., You, C., & Oishi, S. (2021). Explicit a posteriori and a priori error estimation for the finite element solution of stokes equations. Japan Journal of Industrial and Applied Mathematics, 38(2), 545–559.

    Article  MathSciNet  Google Scholar 

  18. Liu, X., & Oishi, S. (2013). Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. SIAM Journal of Numerical Analysis, 51(3), 1634–1654.

    Article  MathSciNet  Google Scholar 

  19. Nakano, T., Li, Q., Yue, M., & Liu, X. (2024). Guaranteed lower eigenvalue bounds for Steklov operators using conforming finite element methods. Computational Methods in Applied Mathematics, 24, 495–510.

    Article  MathSciNet  Google Scholar 

  20. Nakano, T., & Liu, X. (2023). Guaranteed local error estimation for finite element solutions of boundary value problems. Journal of Computational and Applied Mathematics, 425, 115061.

    Article  MathSciNet  Google Scholar 

  21. Payne, L., & Weinberger, H. (1960). An optimal poincaré inequality for convex domains. Archive for Rational Mechanics and Analysis, 5(1), 286–292.

    Article  MathSciNet  Google Scholar 

  22. Plum, M. (1992). Explicit h2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems. Journal of Mathematical Analysis and Applications, 165(1), 36–61.

    Article  MathSciNet  Google Scholar 

  23. Prager, W., & Synge, J. L. (1947). Approximations in elasticity based on the concept of function space. Quarterly of Applied Mathematics, 5(3), 241–269.

    Article  MathSciNet  Google Scholar 

  24. Raviart, P., & Thomas, J. (1977). Mathematical aspects of finite element methods, volume 606 of Lecture notes in mathematics. Heidelberg: Springer Berlin.

    Google Scholar 

  25. Savaré, G. (1998). Regularity results for elliptic equations in Lipschitz domains. Journal of Functional Analysis, 152(1), 176–201.

    Article  MathSciNet  Google Scholar 

  26. Scott, L., & Vogelius, M. (1985). Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. ESAIM: Mathematical Modelling and Numerical Analysis, 19(1), 111–143.

    Article  MathSciNet  Google Scholar 

  27. Stenberg, R. (1989). Some new families of finite elements for the stokes equations. Numerische Mathematik, 56(8), 827–838.

    Article  MathSciNet  Google Scholar 

  28. Verfürth, R. (1999). Error estimates for some quasi-interpolation operators. ESAIM: Mathematical Modelling and Numerical Analysis, 33(04), 695–713.

    Article  MathSciNet  Google Scholar 

  29. You, C., **e, H., & Liu, X. (2019). Guaranteed eigenvalue bounds for the Steklov eigenvalue problem. SIAM Journal on Numerical Analysis, 57, 1395.

    Article  MathSciNet  Google Scholar 

  30. Zhang, S. (2005). A new family of stable mixed finite elements for the 3D Stokes equations. Mathematics of Computation, 74(250), 543–554.

    Article  MathSciNet  Google Scholar 

  31. Zhang, S. (2008). On the P1 Powell-Sabin divergence-free finite element for the stokes equations. Journal of Computational Mathematics, 26(3), 456–470.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, X. (2024). Explicit Error Estimation for Boundary Value Problems. In: Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems. SpringerBriefs in Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-97-3577-8_2

Download citation

Publish with us

Policies and ethics

Navigation