Other Beam-Scanning Techniques

  • Chapter
  • First Online:
Antenna Systems for Modern Wireless Devices

Part of the book series: Signals and Communication Technology ((SCT))

  • 35 Accesses

Abstract

This chapter expands the horizons of beam-scanning technology in WLANs, beyond the realm of electronics. It begins by introducing mechanical beam scanning, exploring the classic approach of physically moving antenna components. We then delve deeper into two distinct methods: utilizing movable parts within the antenna and leveraging lenses to manipulate the beam path. The chapter further investigates the exciting potential of metasurfaces, engineered materials capable of deflecting and sha** electromagnetic waves to achieve beam steering. Additionally, the chapter also examines frequency-selective surfaces (FSS), another innovative approach using patterned structures to achieve beam control. Finally, the chapter concludes by summarizing the unique advantages and limitations of each method, highlighting their potential contributions to diverse WLAN applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 119.83
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yi, H., Qu, S.-W., Ng, K.-B., Chan, C.H., Bai, X.: 3-D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam. IEEE Trans. Antennas Propag. 64(2), 442–449 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. Wu, G.-B., Qu, S.-W., Yang, S.: Wide-angle beam-scanning reflectarray with mechanical steering. IEEE Trans. Antennas Propag. 66(1), 172–181 (2018)

    Article  ADS  Google Scholar 

  3. Mei, P., Zhang, S., Pedersen, G.F.: A low-profile and beam-steerable transmitarray antenna: design, fabrication, and measurement [antenna applications corner]. IEEE Antennas Propag. Mag. 63(5), 88–101 (2021)

    Article  ADS  Google Scholar 

  4. Yang, J., Shen, Y., Wang, L., Meng, H., Dou, W., Hu, S.: 2-D scannable 40-GHz folded reflectarray fed by SIW slot antenna in single-layered PCB. IEEE Trans. Microw. Theory Techn. 66(6), 3129–3135 (2018)

    Article  ADS  Google Scholar 

  5. Yang, X., et al.: A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements. IEEE Trans. Antennas Propag. 65(8), 3959–3966 (2017)

    Article  ADS  Google Scholar 

  6. Nayeri, P., Yang, F., Elsherbeni, A.Z.: Bifocal design and aperture phase optimizations of reflectarray antennas for wide-angle beam scanning performance. IEEE Trans. Antennas Propag. 61(9), 4588–4597 (2013)

    Article  ADS  Google Scholar 

  7. Sánchez-Escuderos, D., Herranz-Herruzo, J.I., Ferrando-Rocher, M., Valero-Nogueira, A.: True-time-delay mechanical phase shifter in gap waveguide technology for slotted waveguide arrays in Ka-band. IEEE Trans. Antennas Propag. 69(5), 2727–2740 (2021)

    Google Scholar 

  8. Yang, J., Qi, S.-S., Wu, W., Fang, D.-G.: A novel high-gain sum and difference conical beam-scanning reflector antenna. IEEE Access 8, 103291–103300 (2020)

    Article  Google Scholar 

  9. Kopacz, J.R., Herschitz, R., Roney, J.: Small satellites an overview and assessment. Acta Astronaut. 170, 93–105 (2020)

    Article  ADS  Google Scholar 

  10. Gao, S., Rahmat-Samii, Y., Hodges, R.E., Yang, X.-X.: Advanced antennas for small satellites. Proc. IEEE 106(3), 391–403 (2018)

    Article  Google Scholar 

  11. Huang, J., Encinar, J.A.: Reflectarray Antennas, vol. 30. Wiley, Hoboken, NJ, USA (2007)

    Book  Google Scholar 

  12. Nayeri, P., Yang, F., Elsherbeni, A.Z.: Beam-scanning reflectarray antennas: A technical overview and state of the art. IEEE Antennas Propag. Mag. 57(4), 32–47 (2015)

    Article  ADS  Google Scholar 

  13. Baracco, J.-M., Ratajczak, P., Brachat, P., Fargeas, J.-M., Toso, G.: Ka-band reconfigurable reflectarrays using varactor technology for space applications: a proposed design. IEEE Antennas Propag. Mag. 64(1), 27–38 (2022)

    Article  Google Scholar 

  14. Mirhamed, M., et al.: Mechanically reconfigurable, beam-scanning reflectarray and transmitarray antennas: a review. Appl. Sci. 11(15), 6890 (2021)

    Article  Google Scholar 

  15. Rubio, A.J., Kaddour, A.-S., Georgakopoulos, S.V.: A mechanically rollable reflectarray with beam-scanning capabilities. IEEE Open J. Antennas Propag. 3, 1180–1190 (2022)

    Article  Google Scholar 

  16. Li, A.: Double-Prism Multi-mode Scanning: Principles and Technology, vol. 216. Springer, Berlin, Germany (2018)

    Book  Google Scholar 

  17. Yang, Y.: Analytic solution of free space optical beam steering using risley prisms. J. Lightw. Technol. 26(21), 3576–3583 (2008)

    Article  ADS  Google Scholar 

  18. Afzal, M.U., Esselle, K.P., Koli, M.N.Y.: A beam-steering solution with highly transmitting hybrid metasurfaces and circularly polarized high-gain radial-line slot array antennas. IEEE Trans. Antennas Propag. 70(1), 365–377 (2022)

    Article  ADS  Google Scholar 

  19. Gagnon, N., Petosa, A.: Using rotatable planar phase shifting surfaces to steer a high-gain beam. IEEE Trans. Antennas Propag. 61(6), 3086–3092 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Wang, J., Rahmat-Samii, Y.: Phase method: a more precise beam steering model for phase-delay metasurface based Risley antenna. In: Proceedings URSI International Symposium on Electromagnetic Theory, pp. 1–4 (2019)

    Google Scholar 

  21. Zhao, X., et al.: All-metal beam steering lens antenna for high power microwave applications. IEEE Trans. Antennas Propag. 65(12), 7340–7344 (2017)

    Google Scholar 

  22. Afzal, M.U., Esselle, K.P.: Steering the beam of medium-to high gain antennas using near-field phase transformation. IEEE Trans. Antennas Propag. 65(4), 1680–1690 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zhang, Z., Zhong, Y.C., Luyen, H., Booske, J.H., Behdad, N.: A low-profile, risley-prism-based, beam-steerable antenna employing a single flat prism. IEEE Trans. Antennas Propag. 70(8), 6646–6658 (2022)

    Article  ADS  Google Scholar 

  24. Wang, J., Rahmat-Samii, Y.: A simplified configuration of beam-steerable risley prism antennas: principles and validation. IEEE Antennas Wirel. Propag. Lett. 21(11), 2288–2292 (2022)

    Article  ADS  Google Scholar 

  25. Teng, M., Yu, S., Kou, N., Ding, Z., Zhang, Z.: Mechanical beam steering array antenna with tunable height. IEEE Antennas Wirel. Propag. Lett. 21(11), 2293–2297 (2022)

    Article  ADS  Google Scholar 

  26. Lu, Y., Zhou, Y., Hei, M., Fan, D.: Theoretical and experimental determination of steering mechanism for Risley prism systems. Appl. Opt. 52(7), 13891398 (2013)

    Article  Google Scholar 

  27. Afzal, M.U., Matekovits, L., Esselle, K.P., Lalbakhsh, A.: Beam-scanning antenna based on near-electric field phase transformation and refraction of electromagnetic wave through dielectric structures. IEEE Access 8, 199242–199253 (2020)

    Article  Google Scholar 

  28. Pavacic, A.P., del Rio, D.L., Mosig, J.R., Eleftheriades, G.V.: Three-dimensional ray-tracing to model internal reflections in off axis lens antennas. IEEE Trans. Antennas Propag. 54(2), 604–612 (2006)

    Article  ADS  Google Scholar 

  29. Frid, H.: Closed-form relation between the scan angle and feed position for extended hemispherical lenses based on ray tracing. IEEE Antennas Wireless Propag. Lett. 15, 1963–1966 (2016)

    Article  ADS  Google Scholar 

  30. Liu, K., Yang, S., Qu, S.-W., Chen, C., Chen, Y.: Phased hemispherical lens antenna for 1-d wide-angle beam scanning. IEEE Trans. Antennas Propag. 67(12), 7617–7621 (2019)

    Article  ADS  Google Scholar 

  31. Gatesman, A.J., Waldman, J., Ji, M., Musante, C., Yngvesson, S.: An anti-reflection coating for silicon optics at terahertz frequencies. IEEE Microw. Guided Wave Lett. 10(7), 264–266 (2000)

    Article  Google Scholar 

  32. Costa, J.R., Lima, E.B., Fernandes, C.A.: Compact beam steerable lens antenna for 60-GHz wireless communications. IEEE Trans. Antennas Propag. 57(10), 2926–2933 (2009)

    Article  ADS  Google Scholar 

  33. Zimmerman.: Luneburg lens and method of constructing same. U.S. patent 5 677 796, Oct. 14, 1997

    Google Scholar 

  34. Fuchs, B., Lafond, O., Rondineau, S., Himdi, M., Le Coq, L.: Offaxis performances of half maxwell fish-eye lens antennas at 77 GHz. IEEE Trans. Antennas Propag. 55(2), 479–482 (2007)

    Article  ADS  Google Scholar 

  35. Fuchs, B., Palud, S., Lafond, O., Le Coq, L., Himdi, M., Rondineau, S.: Antenna system having a radiating diagram reconfigurable from sectorial and directional radiating diagrams, and corresponding transmitter and/or receiver device. Patent no. WO2009013248 (2007)

    Google Scholar 

  36. Lafond, O., Himdi, M., Merlet, H., Lebars, P.: An active reconfigurable antenna at 60 GHz based on plate inhomogeneous lens and feeders. IEEE Trans. Antennas Propag. 61(4), 1672–1678 (2013)

    Article  ADS  Google Scholar 

  37. Luneberg, R.K.: Mathematical Theory of Optics, pp. 189–212. Brown University Press, Providence, RI, USA (1944)

    Google Scholar 

  38. Thornton, J.: Wide-scanning multi-layer hemisphere lens antenna for Ka band. IEE Proc. Microw. Antennas Propag. 153(6), 573–578 (2006)

    Google Scholar 

  39. Rondineau, S., Himdi, M., Sorieux, J.: A sliced spherical Luneburg lens. IEEE Antennas Wireless Propag. Lett. 2, 163–166 (2003)

    Article  ADS  Google Scholar 

  40. Jian, M., Chen, Z.N., Zhang, Y., Hong, W., Xuan, X.: Metamaterial based thin planar lens antenna for spatial beamforming and multibeam massive MIMO. IEEE Trans. Antennas Propag. 65(2), 464–472 (2017)

    Article  ADS  Google Scholar 

  41. Jia, D., He, Y., Ding, N., Zhou, J., Du, B., Zhang, W.: Beam-steering flat lens antenna based on multilayer gradient index metamaterials. IEEE Antennas Wirel. Propag. Lett. 17(8), 1510–1514 (2018)

    Article  ADS  Google Scholar 

  42. Imbert, M., Papio, A., De Flaviis, F., Jofre, L., Romeu, J.: Design and performance evaluation of a switched-beam antenna array for 60 GHz WPAN applications. In: Proceedings 9th European Conference on Antennas and Propagation (EuCAP), pp. 1–5, April 2015

    Google Scholar 

  43. Imbert, M., Papió, A., Flaviis, F.D., Jofre, L., Romeu, J.: Design and performance evaluation of a dielectric flat lens antenna for millimeter wave applications. IEEE Antennas Wirel. Propag. Lett. 14, 342–345 (2015)

    Article  ADS  Google Scholar 

  44. George, J., Smulders, P.F.M., Herben, M.H.A.J.: Application of fan-beam antennas for 60 GHz indoor wireless communication. Electron. Lett. 37(2), 73–74 (2001)

    Article  ADS  Google Scholar 

  45. Artemenko, A., Mozharovskiy, A., Maltsev, A., Maslennikov, R., Sevastyanov, A., Ssorin, V.: Experimental characterization of E-band two-dimensional electronically beam-steerable integrated lens antennas. IEEE Antennas Wirel. Propag. Lett. 12, 1188–1191 (2013)

    Article  ADS  Google Scholar 

  46. Boriskin, A.V., Sauleau, R.: Numerical investigation into the design of shaped dielectric lens antennas with improved angular characteristics. Prog. Electromagn. Res. B 30, 279–292 (2011)

    Article  Google Scholar 

  47. Costa, J.R., Silveirinha, M.G., Fernandes, C.A.: Evaluation of a double-shell integrated scanning lens antenna. IEEE Antennas Wirel. Propag. Lett. 7, 781–784 (2008)

    Article  ADS  Google Scholar 

  48. Mosallaei, H., Rahmat-Samii, Y.: Nonuniform Luneburg and two shell lens antennas: radiation characteristics and design optimization. IEEE Trans. Antennas Propag. 49(1), 60–69 (2001)

    Article  ADS  Google Scholar 

  49. Towfiq, M.A., Bahceci, I., Blanch, S., Romeu, J., Jofre, L., Cetiner, B.A.: A reconfigurable antenna with beam steering and beamwidth variability for wireless communications. IEEE Trans. Antennas Propag. 66(10), 5052–5063 (2018)

    Article  ADS  Google Scholar 

  50. Hongnara, T., Chaimool, S., Akkaraekthalin, P., Zhao, Y.: Design of compact beam-steering antennas using a metasurface formed by uniform square rings. IEEE Access 6, 9420–9429 (2018)

    Article  Google Scholar 

  51. Cao, W., **ang, Y., Zhang, B., Liu, A., Yu, T., Guo, D.: A low-cost compact patch antenna with beam steering based on CSRR-loaded ground. IEEE Antennas Wirel. Propag. Lett. 10, 1520–1523 (2011)

    Article  ADS  Google Scholar 

  52. Katare, K.K., Chandravanshi, S., Sharma, A., Biswas, A., Jaleel Akhtar, M.: Anisotropic metasurface-based beam-scanning dual-polarized fan-beam integrated antenna system. IEEE Trans. Antennas Propag. 67(12), 7204–7215 (2019)

    Google Scholar 

  53. Ferreira, D., Caldeirinha, R.F.S., Cuiñas, I., Fernandes, T.R.: Square loop and slot frequency selective surfaces study for equivalent circuit model optimization. IEEE Trans. Antennas Propag. 63(9), 3947–3955 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  54. Zhao, R., Gong, B., **ao, F., He, C., Zhu, W.: Circuit model analysis of switchable perfect absorption/reflection in an active frequency selective surface. IEEE Access 7, 55518–55523 (2019)

    Article  Google Scholar 

  55. Moallem, M., Sarabandi, K.: Miniaturized-element frequency selective surfaces for millimeter-wave to terahertz applications. IEEE Trans. Terahertz Sci. Technol. 2(3), 333–339 (2012)

    Article  ADS  Google Scholar 

  56. Abdelrahman, A.H., Elsherbeni, A.Z., Yang, F.: Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs. IEEE Trans. Antennas Propag. 62, 690–697 (2014)

    Article  ADS  Google Scholar 

  57. Mamedes, D.F., Gomes Neto, A., Silva, J.C.E., Bornemann, J.: Design of reconfigurable frequency-selective surfaces including the PIN diode threshold region. IET Microw. Antennas Propag. 12(9), 1483–1486 (2018)

    Google Scholar 

  58. Hu, W., Dickie, R., Cahill, R., Gamble, H., Ismail, Y., Fusco, V., Linton, D., Grant, N., Rea, S.: Liquid crystal tunable mm wave frequency selective surface. IEEE Microw. Wirel. Compon. Lett. 17(9), 667–669 (2007)

    Article  Google Scholar 

  59. Azemi, S.N., Ghorbani, K., Rowe, W.S.T.: A reconfigurable FSS using a spring resonator element. IEEE Antennas Wirel. Propag. Lett. 12, 781–784 (2013)

    Article  ADS  Google Scholar 

  60. Lei, B.J., Zamora, A., Chun, T.F., Ohta, A.T., Shiroma, W.A.: A wideband, pressure-driven, liquid-tunable frequency selective surface. IEEE Microw. Wirel. Compon. Lett. 21(9), 465–467 (2011)

    Article  Google Scholar 

  61. Li, M., Behdad, N.: Fluidically tunable frequency selective/phase shifting surfaces for high-power microwave applications. IEEE Trans. Antennas Propag. 60(6), 2748–2759 (2012)

    Article  ADS  Google Scholar 

  62. Ferreira, D., Cuinas, I., Caldeirinha, R.F.S., Fernandes, T.R.: 3-D mechanically tunable square slot FSS. IEEE Trans. Antennas Propag. 65(1), 242–250 (2017)

    Article  ADS  Google Scholar 

  63. Fuchi, K., Tang, J., Crowgey, B., Diaz, A.R., Rothwell, E.J., Ouedraogo, R.O.: Origami tunable frequency selective surfaces. IEEE Antennas Wireless Propag. Lett. 11, 473–475 (2012)

    Article  ADS  Google Scholar 

  64. Safari, M., Shafai, C., Shafai, L.: X-band tunable frequency selective surface using MEMS capacitive loads. IEEE Trans. Antennas Propag. 63(3), 1014–1021 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  65. Zendejas, J.M., Gianvittorio, J.P., Rahmat-Samii, Y., Judy, J.W.: Magnetic MEMS reconfigurable frequency-selective surfaces. J. Microelectromech. Syst. 15(3), 613–623 (2006)

    Article  Google Scholar 

  66. Elzwawi, G.H., Elzwawi, H.H., Tahseen, M.M., Denidni, T.A.: Frequency selective surface-based switched-beamforming antenna. IEEE Access 6, 48042–48050 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiban K. Koul .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koul, S.K., Swapna, S., Karthikeya, G.S. (2024). Other Beam-Scanning Techniques. In: Antenna Systems for Modern Wireless Devices. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-97-3369-9_4

Download citation

Publish with us

Policies and ethics

Navigation