Stellar Dynamos

  • Chapter
  • First Online:
Stellar Rotation

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 31 Accesses

Abstract

In the previous chapter we discussed the various aspects of stellar activity. In this chapter we will outline the underlying theoretical background that explains stellar activity as well as the stellar activity cycle. This theory is based on the stellar dynamo, similar to the solar dynamo. We will see that the rotation of a star is a crucial parameter for understanding stellar dynamos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reader should consult textbooks on general relativity for the definition of the covariant derivative

  2. 2.

    The present average distance is about 385 000 km.

References

  1. H.B. Snodgrass, R.K. Ulrich, Rotation of Doppler features in the solar photosphere. Astrophys. J. 351, 309 (1990)

    Google Scholar 

  2. J.P. Zahn, Circulation and turbulence in rotating stars. Astron. Astrophys. 265, 115–132 (1992)

    Google Scholar 

  3. E.A. Spiegel, J.P. Zahn, The solar tachocline. Astron. Astrophys. 265, 106–114 (1992)

    Google Scholar 

  4. J. Schou, H.M. Antia, S. Basu, R.S. Bogart, R.I. Bush, S.M. Chitre, J. Christensen-Dalsgaard, M.P. Di Mauro, W.A. Dziembowski, A. Eff-Darwich, D.O. Gough, D.A. Haber, J.T. Hoeksema, R. Howe, S.G. Korzennik, A.G. Kosovichev, R.M. Larsen, F.P. Pijpers, P.H. Scherrer, T. Sekii, T.D. Tarbell, A.M. Title, M.J. Thompson, J. Toomre, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler imager. Astrophys. J. 505(1), 390–417 (1998)

    Google Scholar 

  5. A. Mazumdar, H.M. Antia, Seismic detection of stellar tachoclines. Astron. Astrophys. 368, L8–L12 (2001)

    Google Scholar 

  6. T. Corbard, M.J. Thompson, The subsurface radial gradient of solar angular velocity from MDI f-mode observations. Solar Phys. 205(2), 211–229 (2002)

    Google Scholar 

  7. L.L. Kitchatinov, Meridional circulation in the sun and stars. Geomag. Aeron. 56(8), 945–951 (2016)

    Google Scholar 

  8. V. Holzwarth, D.H. Mackay, M. Jardine, The impact of meridional circulation on stellar butterfly diagrams and polar caps. Mon. Not. 369(4), 1703–1718 (2006)

    Google Scholar 

  9. J.M. Beckers, The effect of stellar meridional motions on extrasolar planet detection, in American Astronomical Society Meeting Abstracts #206, American Astronomical Society Meeting Abstracts, vol. 206, p. 23.06, May 2005

    Google Scholar 

  10. D.B. de Freitas, M.M.F. Nepomuceno, J.G. Cordeiro, M.L. Das Chagas, J.R. de Medeiros, VizieR Online Data Catalog: Kepler stars’ surface differential rotation (de Freitas, 2019). VizieR Online Data Catalog, page J/MNRAS/488/3274, Nov 2022

    Google Scholar 

  11. Q. Noraz, S.N. Breton, A.S. Brun, R.A. García, A. Strugarek, A.R.G. Santos, S. Mathur, L. Amard, Searching for anti-solar differentially rotating stars - An application to the Kepler field, in SF2A-2022: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics. Eds.: J. Richard, ed. by J. Richard, A. Siebert, E. Lagadec, N. Lagarde, O. Venot, J. Malzac, J.B. Marquette, M. N’Diaye, B. Briot, Dec 2022, pp. 89–92

    Google Scholar 

  12. P.J. Käpylä, Transition from anti-solar to solar-like differential rotation: dependence on Prandtl number. ar**v e-prints, page ar**v:2207.00302, July 2022

  13. A. Brandenburg, Stellar mixing length theory with entropy rain. Astrophys. J. 832(1), 6 (2016)

    Google Scholar 

  14. F.H. Busse, Generation of planetary magnetism by convection. Phys. Earth Planet. Inter. 12(4), 350–358 (1976)

    Google Scholar 

  15. Y. Sano, The magnetic fields of the planets: a new scaling law of the dipole moments of the planetary magnetism. J. Geomagn. Geoelectr. 45(1), 65–77 (1993)

    Google Scholar 

  16. U.R. Christensen, Dynamo scaling laws and applications to the planets. Space Sci. Rev. 152(1–4), 565–590 (2010)

    Google Scholar 

  17. C.A. Jones, M.J. Thompson, S.M. Tobias, The solar dynamo. Space Sci. Rev. 152(1–4), 591–616 (2010)

    Google Scholar 

  18. A. Tilgner, Precession driven dynamos. Phys. Fluids 17(3), 034104–034104–6 (2005)

    Google Scholar 

  19. E. Bullard, H. Gellman, Homogeneous dynamos and terrestrial magnetism. Philos. Trans. R. Soc. Lond. Ser. A 247(928), 213–278 (1954)

    Google Scholar 

  20. X. Wei, The combined effect of precession and convection on the dynamo action. Astrophys. J. 827(2), 123 (2016)

    Google Scholar 

  21. P. Olson, The new core paradox. Science 342(6157), 431–432 (2013)

    Google Scholar 

  22. X. Wei, R. Arlt, A. Tilgner, A simplified model of collision-driven dynamo action in small bodies. Phys. Earth Planet. Inter. 231, 30–38 (2014)

    Google Scholar 

  23. C.A. Dwyer, D.J. Stevenson, F. Nimmo, A long-lived lunar dynamo driven by continuous mechanical stirring. Nature 479(7372), 212–214 (2011)

    Google Scholar 

  24. E.N. Parker, Cosmical Magnetic Fields. Their Origin and Their Activity (1979)

    Google Scholar 

  25. G. Mathys, Ap stars with resolved magnetically split lines: magnetic field determinations from Stokes I and V spectra\(\star \). Astron. Astrophys. 601, A14 (2017)

    Google Scholar 

  26. E. Alecian, C. Neiner, S. Mathis, C. Catala, O. Kochukhov, J. Landstreet, The dramatic change of the fossil magnetic field of HD 190073: evidence of the birth of the convective core in a Herbig star? Astron. Astrophys. 549, L8 (2013)

    Google Scholar 

  27. J. Goldstein, R.H.D. Townsend, E.G. Zweibel, The Tayler instability in the anelastic approximation. Astrophys. J. 881(1), 66 (2019)

    Google Scholar 

  28. L.L. Kitchatinov, I.S. Potravnov, A.A. Nepomnyashchikh, Longitudinal drift of Tayler instability eigenmodes as a possible explanation for super-slowly rotating Ap stars. Astron. Astrophys. 638, L9 (2020)

    Google Scholar 

  29. X. Wei, Tidal dynamo in solar-like close binary stars. Mon. Not. 513(4), 5474–5476 (2022)

    Google Scholar 

  30. J. Vidal, A.J. Barker, Efficiency of tidal dissipation in slowly rotating fully convective stars or planets. Mon. Not. 497(4), 4472–4485 (2020)

    Google Scholar 

  31. L. Petitdemange, F. Marcotte, C. Gissinger, Hidden dynamo spins down radiative stars. ar**v e-prints, page ar**v:2206.13819, June 2022

  32. H.C. Spruit, Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923–932 (2002)

    Google Scholar 

  33. S.H. Saar, A. Brandenburg, Time evolution of the magnetic activity cycle period. II. Results for an expanded stellar sample. Astrophys. J. 524(1), 295–310 (1999)

    Google Scholar 

  34. N.J. Wright, J.J. Drake, E.E. Mamajek, G.W. Henry, The stellar-activity-rotation relationship and the evolution of stellar dynamos. Astrophys. J. 743(1), 48 (2011)

    Google Scholar 

  35. M.A. Weber, Y. Fan, M.S. Miesch, The rise of active region flux tubes in the turbulent solar convective envelope. Astrophys. J. 741(1), 11 (2011)

    Google Scholar 

  36. E.G. Blackman, J.H. Thomas, Explaining the observed relation between stellar activity and rotation. Mon. Not. 446, L51–L55 (2015)

    Google Scholar 

  37. L.L. Kitchatinov, S.V. Olemskoy, Dynamo saturation in rapidly rotating solar-type stars. Res. Astron. Astrophys. 15(11), 1801 (2015)

    Google Scholar 

  38. H.W. Babcock, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572 (1961)

    Google Scholar 

  39. R.B. Leighton, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1 (1969)

    Google Scholar 

  40. A.R. Choudhuri, P.A. Gilman, The influence of the Coriolis force on flux tubes rising through the solar convection zone. Astrophys. J. 316, 788 (1987)

    Google Scholar 

  41. R.F. Howard, Solar active regions as diagnostics of subsurface conditions. Annu. Rev. Astron. Astrophys. 34, 75–110 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Hanslmeier .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanslmeier, A., Brajša, R. (2024). Stellar Dynamos. In: Stellar Rotation. UNITEXT for Physics. Springer, Singapore. https://doi.org/10.1007/978-981-97-3365-1_5

Download citation

Publish with us

Policies and ethics

Navigation