Effect of Spindle Speed and Feed Rate on Machining of Zirconia Bio-ceramic Using CNC Rotary Ultrasonic Machine

  • Conference paper
  • First Online:
Advances in Manufacturing and Materials (FLUTE 2023)

Abstract

Rotary ultrasonic machining (RUM) is an inexpensive and environment favorable method for machining brittle material such as advanced ceramics. The main objective of this review was to highlight important conclusions of the prior studies conducted by various researchers. The drilling of stepped, square, and hexagonal holes, straight and serpentine micro-channels and face milling has been performed on various bio-ceramic materials using rotary ultrasonic machining (RUM). Moreover, the effect of machining parameters such as types of abrasive, grit size, concentration of slurry, power rating, tool feed rate, vibration amplitude, and frequency on various performance parameters, i.e., material removal rate (MRR), surface roughness (SR), surface quality, and tool wear has also been elaborated. This article reviewed a detailed and sequential overview of RUM applied to bio-ceramics, examining the various process and performance parameters that have been studied by researchers. The review covers a broad range of advanced ceramic materials used in different types of biomedical applications. Moreover, the challenges and requirements of advanced bio-ceramics with applications have been discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lalchhuanvela H, Doloi B, Bhattacharyya B (2013) Analysis on profile accuracy for ultrasonic machining of alumina ceramics. Int J Adv Manuf Technol 67:1683–1691

    Article  Google Scholar 

  2. Singh RP, Kumar J, Kataria R, Singhal S (2015) Investigation of the machinability of commercially pure titanium in ultrasonic machining using graph theory and matrix method. J Eng Res 3:1–20

    Article  Google Scholar 

  3. Kumar J (2013) Ultrasonic machining—a comprehensive review. Machin Sci Technol 17(3):325–379

    Article  Google Scholar 

  4. Hocheng H, Kuo KL, Lin JT (1999) Machinability of zirconia ceramics in ultrasonic drilling. Mater Manuf Process 14(5):713–724

    Article  Google Scholar 

  5. Ghahramani B, Wang ZY (2001) Precision ultrasonic machining process: a case study of stress analysis of ceramic (Al2O3). Int J Mach Tools Manuf 41(8):1189–1208

    Article  Google Scholar 

  6. Davim JP, Jain VK (2008) Advanced (non-traditional) machining processes. In: Machining: Fundamentals and recent advances, pp 299–327

    Google Scholar 

  7. Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38(4):239–255

    Article  Google Scholar 

  8. Dvivedi A, Kumar P (2007) Surface quality evaluation in ultrasonic drilling through the Taguchi technique. Int J Adv Manuf Technol 34:131–140

    Article  Google Scholar 

  9. Kataria R, Kumar J (2016) Ultrasonic machining: a review. Adv Mater Res 1137:61–78

    Article  Google Scholar 

  10. Jain V, Sharma AK, Kumar P (2011) Recent developments and research issues in microultrasonic machining. International Scholarly Research Notices (2011)

    Google Scholar 

  11. Singh RP, Singhal S (2016) Rotary ultrasonic machining: a review. Mater Manuf Process 31(14):1795–1824

    Article  Google Scholar 

  12. Rai S, Vishnoi M, Mamatha TG (2023) A novel investigation of sacrificing layer effect on micro-channel fabrication of glass using rotary ultrasonic machining. J Braz Soc Mech Sci Eng 45(7):350

    Article  Google Scholar 

  13. Churi N (2010) Rotary ultrasonic machining of hard-to-machine materials. Doctoral dissertation, Kansas State University

    Google Scholar 

  14. Khoo CKC, Hamzah E, Sudin I (2008) A review on the rotary ultrasonic machining of advanced ceramics. Jurnal Mekanikal

    Google Scholar 

  15. Guzzo PL, Shinohara AH, Raslan AA (2004) A comparative study on ultrasonic machining of hard and brittle materials. J Braz Soc Mech Sci Eng 26:56–61

    Article  Google Scholar 

  16. Rayat MS, Gill SS, Singh R, Sharma L (2017) Fabrication and machining of ceramic composites—a review on current scenario. Mater Manuf Process 32(13):1451–1474

    Article  Google Scholar 

  17. Daou EE (2014) The zirconia ceramic: strengths and weaknesses. Open Dentistry J 8:33

    Article  Google Scholar 

  18. Thamaraiselvi T, Rajeswari S (2004) Biological evaluation of bioceramic materials—a review. Carbon 24(31):172

    Google Scholar 

  19. Denry I, Kelly JR (2008) State of the art of zirconia for dental applications. Dental Mater 24(3):299–307

    Article  Google Scholar 

  20. Abd El-Ghany OS, Sherief AH (2016) Zirconia based ceramics, some clinical and biological aspects. Fut Dental J 2(2):55–64

    Article  Google Scholar 

  21. Guarino S, Ponticelli GS, Giannini O, Genna S, Trovalusci F (2018) Laser milling of yttria-stabilized zirconia by using a Q-switched Yb:YAG fiber laser: experimental analysis. Int J Adv Manuf Technol 94:1373–1385

    Article  Google Scholar 

  22. Finch DS, Oreskovic T, Ramadurai K, Herrmann CF, George SM, Mahajan RL (2008) Biocompatibility of atomic layer-deposited alumina thin films. J Biomed Mater Res Part A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 87(1):100–106

    Google Scholar 

  23. Groß GA, Thelemann T, Schneider S, Boskovic D, Köhler JM (2008) Fabrication and fluidic characterization of static micromixers made of low temperature cofired ceramic (LTCC). Chem Eng Sci 63(10):2773–2784

    Article  Google Scholar 

  24. Suri AK, Subramanian C, Sonber JK, Murthy TC (2010) Synthesis and consolidation of boron carbide: a review. Int Mater Rev 55(1):4–40

    Article  Google Scholar 

  25. Komaraiah M, Manan MA, Reddy PN, Victor S (1988) Investigation of surface roughness and accuracy in ultrasonic machining. Precis Eng 10(2):59–65

    Article  Google Scholar 

  26. Hu P, Zhang JM, Pei ZJ, Treadwel C (2002) Modeling of material removal rate and in rotary ultrasonic machining: designed experiments. J Mater Process Technol 129:339–344

    Article  Google Scholar 

  27. Mamatha TG, Bhatnagar MK, Malik V, Srivastava S, Vishnoi M (2021) A comprehensive review of ultrasonic machining: a tool for machining brittle materials. In: Patnaik A, Banerjee MK, Kozeschnik E, Cavaleiro A, Davim JP, Kukshal V (eds) Advanced Materials and Manufacturing Processes. CRC Press, Boca Raton, pp 35–76

    Chapter  Google Scholar 

  28. Rai S, Srivastava S, Vishnoi M, Mamatha TG (2022) Role of sacrificing layer on glasses during ultrasonic machining (USM)—a review. Mater Today Proc

    Google Scholar 

  29. Das S, Doloi B, Bhattacharyya B (2013) Optimisation of ultrasonic machining of zirconia bio-ceramics using genetic algorithm. Int J Manuf Technol Manag 27(4–6):186–197

    Article  Google Scholar 

  30. Elkadiki B, Elmabrouk O (2020) Prediction of USM process parameters, material remove rate and surface roughness of zirconia bioceramics using RSM and fuzzy-logic. In: Proceedings of the 6th International Conference on Engineering and MIS 2020, pp 1–6

    Google Scholar 

  31. Das S, Kumar S, Doloi B, Bhattacharyya B. Parametric studies on profile accuracy of square stepped hole generated on zirconia by USM process

    Google Scholar 

  32. Abdo B, Darwish SM, El-Tamimi AM (2012) Parameters optimization of rotary ultrasonic machining of zirconia ceramic for surface roughness using statistical taguchi’s experimental design. Appl Mech Mater 184:11–17

    Article  Google Scholar 

  33. Abdo BM, El-Tamimi A, Alkhalefah H (2020) Parametric analysis and optimization of rotary ultrasonic machining of zirconia (ZrO2) ceramics. IOP Conf Ser Mater Sci Eng 727(1):012009

    Article  Google Scholar 

  34. AlKawaz M, Hafiz MSA, Kasim MS, Izamshah R (2018) Study of dental zirconia milling using rotary ultrasonic machining. Int J Eng Technol 7(4.16):181–183

    Google Scholar 

  35. Das S, Doloi B, Bhattacharyya B (2016) Fabrication of stepped hole on zirconia bioceramics by ultrasonic machining. Machin Sci Technol 20(4):681–700

    Article  Google Scholar 

  36. Abdo B, Darwish SM, Al-Ahmari AM, El-Tamimi AM (2013) Optimization of process parameters of rotary ultrasonic machining based on Taguchis method. Adv Mater Res 748:273–280

    Article  Google Scholar 

  37. Biswas JH, Jagadish, Ray A (2019) Experimental investigation and optimisation of ultrasonic machining parameters on zirconia composite. Int J Machin Machinabil Mater 21(1–2):115–137

    Google Scholar 

  38. Singh RP, Singhal S (2018) Experimental study on rotary ultrasonic machining of alumina ceramic: microstructure analysis and multi-response optimization. Proc Inst Mech Eng Part L J Mater Des Appl 232(12):967–986

    Google Scholar 

  39. Abdo BM, Anwar S, El-Tamimi AM, Abouel Nasr E (2019) Experimental analysis on the influence and optimization of μ-RUM parameters in machining alumina bioceramic. Materials 12(4):616

    Article  Google Scholar 

  40. Liu JW, Baek DK, Ko TJ (2014) Chip** minimization in drilling ceramic materials with rotary ultrasonic machining. Int J Adv Manuf Technol 72(9–12):1527–1535

    Article  Google Scholar 

  41. Haashir A, Debnath T, Patowari PK (2020) A comparative assessment of micro drilling in boron carbide using ultrasonic machining. Mater Manuf Process 35(1):86–94

    Article  Google Scholar 

  42. Das S, Kumar S, Doloi B, Bhattacharyya B (2016) Experimental studies of ultrasonic machining on hydroxyapatite bio-ceramics. Int J Adv Manuf Technol 86:829–839

    Article  Google Scholar 

  43. Mamatha TG, Vishnoi M, Srivastava S, Malik V, Bhatnagar MK (2022) Micro-channel fabrication on silicon wafer (100) using Rotary Ultrasonic Machining. Silicon 14(16):10271–10290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Anuj Kushwaha: Conceptualization, Review and Editing, Supervision. Anupam Anuragi: Data Curation, Experimentation. Mohit Vishnoi: Conceptualization, Review and Editing, Supervision. Mamatha TG: Supervision. Shardul Rai: Data Curation, Experimentation.

Corresponding author

Correspondence to Mohit Vishnoi .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kushwaha, A., Anuragi, A., Vishnoi, M., Mamatha, T.G., Rai, S. (2024). Effect of Spindle Speed and Feed Rate on Machining of Zirconia Bio-ceramic Using CNC Rotary Ultrasonic Machine. In: Kumar, R., Phanden, R.K., Tyagi, R.K., Ramkumar, J. (eds) Advances in Manufacturing and Materials. FLUTE 2023. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-97-3173-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-3173-2_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-3172-5

  • Online ISBN: 978-981-97-3173-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation