Simulants for Arteries

  • Chapter
  • First Online:
Soft Tissue Simulants

Abstract

Arterial tissue refers to the tissues that make up arteries, which are blood vessels responsible for carrying oxygenated blood away from the heart to various parts of the body. Arteries play a crucial role in the circulatory system, and their structure is specialized to withstand the high pressure and pulsatile flow of blood that occurs as a result of the heart's pum** action. Arterial tissue has three layers, i.e., tunica intima, tunica media, and tunica adventitia (see Fig. 12.1). Tunica intima is the innermost layer of arterial tissue and consists of two components known as endothelium and subendothelial layer. The endothelium is a single layer of endothelial cells that form a smooth, thin lining on the interior surface of the artery. This endothelial layer is in direct contact with the blood, promoting smooth blood flow and preventing clotting. The subendothelial layer is a layer of connective tissue that provides support to the endothelium. The middle layer of arterial tissue is tunica media and has smooth muscle cells and elastic fibers. Smooth muscle cells constitute the majority of the tunica media and are arranged in concentric layers. The contraction and relaxation of smooth muscle cells regulate the diameter of the artery, influencing blood flow and blood pressure. Interspersed among smooth muscle cells, elastic fibers provide elasticity to the artery, allowing it to stretch during systole (heart contraction) and recoil during diastole (heart relaxation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 136.95
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A (1997) Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest 100:2793–2799. https://doi.org/10.1172/JCI119826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McKee JA, Banik SSR, Boyer MJ, Hamad NM, Lawson JH, Niklason LE et al (2003) Human arteries engineered in vitro. EMBO Rep 4:633–638. https://doi.org/10.1038/SJ.EMBOR.EMBOR847/ASSET/42E70E24-2CC9-4709-972D-5CE9579921E9/ASSETS/GRAPHIC/EMBR847-FIG-0003-M.JPG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fleischer S, Naveed Tavakol D, Vunjak-Novakovic G, Fleischer S, Tavakol DN, Vunjak-Novakovic G (2020) From arteries to capillaries: approaches to engineering human vasculature. Adv Funct Mater 30:1910811. https://doi.org/10.1002/ADFM.201910811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh G, Chanda A (2021) Mechanical properties of whole-body soft human tissues: a review. Biomed Mater 16:062004. https://doi.org/10.1088/1748-605X/AC2B7A

    Article  CAS  Google Scholar 

  5. Chanda A, Curry K (2018) Patient-specific biofidelic human coronary artery surrogates. J Mech Med Biol 18. https://doi.org/10.1142/S0219519418500495

  6. Ferrara A, Pandolfi A (2008) Numerical modelling of fracture in human arteries. Comput Methods Biomech Biomed Eng 11:553–567. https://doi.org/10.1080/10255840701771743

    Article  CAS  Google Scholar 

  7. Claes E, Atienza JM, Guinea GV, Rojo FJ, Bernal JM, Revuelta JM et al (2010) Mechanical properties of human coronary arteries. In: 2010 annual international conference of the IEEE engineering in medicine and biology society, EMBC’10, pp 3792–3795. https://doi.org/10.1109/IEMBS.2010.5627560

  8. Hutchins GM, Kessler-Hanna A, Moore GW (1988) Development of the coronary arteries in the embryonic human heart. Circulation 77:1250–1257. https://doi.org/10.1161/01.CIR.77.6.1250

    Article  CAS  PubMed  Google Scholar 

  9. Friedman MH, Hutchins GM, Brent Bargeron C, Deters OJ, Mark FF (1981) Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39:425–436. https://doi.org/10.1016/0021-9150(81)90027-7

    Article  CAS  PubMed  Google Scholar 

  10. Chanda A, Singh G (2023) Applications, challenges, and future opportunities. In: Materials horizons: from nature to nanomaterials, pp 85–92. https://doi.org/10.1007/978-981-99-2225-3_8/COVER

  11. Herrera J, Henke CA, Bitterman PB (2018) Extracellular matrix as a driver of progressive fibrosis. J Clin Invest 128:45–53. https://doi.org/10.1172/JCI93557

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mendelson K, Schoen FJ (2006) Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng 34:1799–1819. https://doi.org/10.1007/S10439-006-9163-Z/FIGURES/5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Johnston BM, Johnston PR, Corney S, Kilpatrick D (2004) Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J Biomech 37:709–720. https://doi.org/10.1016/J.JBIOMECH.2003.09.016

    Article  PubMed  Google Scholar 

  14. Jensen BC, Swigart PM, Laden ME, DeMarco T, Hoopes C, Simpson PC (2009) The alpha-1D is the predominant alpha-1-adrenergic receptor subtype in human epicardial coronary arteries. J Am Coll Cardiol 54:1137–1145. https://doi.org/10.1016/J.JACC.2009.05.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holzapfel GA, Ogden RW, Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc R Soc A Math Phys Eng Sci 466:1551–1597. https://doi.org/10.1098/RSPA.2010.0058

    Article  Google Scholar 

  16. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH (2018) 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 132:296–332. https://doi.org/10.1016/J.ADDR.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  17. Chanda A, Singh G (2023) Introduction to human tissues. In: Materials horizons: from nature to nanomaterials, pp 1–12. https://doi.org/10.1007/978-981-99-2225-3_1/COVER

  18. Singh G, Gupta V, Chanda A (2022) Artificial skin with varying biomechanical properties. Mater Today Proc 62:3162–3166. https://doi.org/10.1016/J.MATPR.2022.03.433

    Article  CAS  Google Scholar 

  19. Singh G, Chanda A (2023) Biofidelic gallbladder tissue surrogates. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2023.2198835

    Article  Google Scholar 

  20. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195:5685–5706. https://doi.org/10.1016/J.CMA.2005.11.011

    Article  Google Scholar 

  21. Hayashi K, Handa H, Nagasawa S, Okumura A, Moritake K (1980) Stiffness and elastic behavior of human intracranial and extracranial arteries. J Biomech 13:175–184. https://doi.org/10.1016/0021-9290(80)90191-8

    Article  CAS  PubMed  Google Scholar 

  22. Gupta V, Singla R, Singh G, Chanda A (2023) Development of soft composite based anisotropic synthetic skin for biomechanical testing. Fibers 11:55. https://doi.org/10.3390/FIB11060055

  23. Gupta V, Singh G, Chanda A (2023) High expansion auxetic skin graft simulants for severe burn injury mitigation. Eur Burn J 4:108–120. https://doi.org/10.3390/EBJ4010011

  24. Gupta V, Singh G, Chanda A (2023) Modeling of metamaterial based incision patterns for generating high expansions in skin grafts. Clin Biomech 110:106118. https://doi.org/10.1016/J.CLINBIOMECH.2023.106118

    Article  Google Scholar 

  25. Vignon-Clementel IE, Alberto Figueroa C, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776–3796. https://doi.org/10.1016/J.CMA.2005.04.014

    Article  Google Scholar 

  26. Singh G, Chanda A (2023) Biofidelic tongue and tonsils tissue surrogates. In: Materials horizons: from nature to nanomaterials, Part F1471, pp 159–170. https://doi.org/10.1007/978-981-99-5064-5_10/COVER

  27. Gupta V, Singh G, Chanda A (2022) Development and testing of skin grafts models with varying slit orientations. Mater Today Proc 62:3462–3467. https://doi.org/10.1016/J.MATPR.2022.04.282

    Article  Google Scholar 

  28. Singh G, Chanda A (2023) Development and biomechanical testing of human stomach tissue surrogates. In: Materials horizons: from nature to nanomaterials, Part F1471, pp 113–125. https://doi.org/10.1007/978-981-99-5064-5_7/COVER

  29. Martins PALS, Natal Jorge RM, Ferreira AJM (2006) A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain 42:135–147. https://doi.org/10.1111/j.1475-1305.2006.00257.x

    Article  Google Scholar 

  30. Vikatmaa P, Juutilainen V, Kuukasjärvi P, Malmivaara A (2008) Negative pressure wound therapy: a systematic review on effectiveness and safety. Eur J Vasc Endovasc Surg 36:438–448. https://doi.org/10.1016/J.EJVS.2008.06.010

    Article  CAS  PubMed  Google Scholar 

  31. Mu J, Sun T, Leung CLA, Oliveira JP, Wu Y, Wang H et al (2023) Application of electrochemical polishing in surface treatment of additively manufactured structures: a review. Prog Mater Sci 136:101109. https://doi.org/10.1016/J.PMATSCI.2023.101109

    Article  CAS  Google Scholar 

  32. Khan A ur R, Huang K, Khalaji MS, Yu F, **e X, Zhu T et al (2021) Multifunctional bioactive core-shell electrospun membrane capable to terminate inflammatory cycle and promote angiogenesis in diabetic wound. Bioact Mater 6:2783–800. https://doi.org/10.1016/J.BIOACTMAT.2021.01.040

  33. Chanda A, Singh G (2023) Tissues in functional organs—low stiffness. In: Materials horizons: from nature to nanomaterials, pp 33–48. https://doi.org/10.1007/978-981-99-2225-3_4/COVER

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Chanda .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanda, A., Singh, G. (2024). Simulants for Arteries. In: Soft Tissue Simulants. Biomedical Materials for Multi-functional Applications. Springer, Singapore. https://doi.org/10.1007/978-981-97-3060-5_12

Download citation

Publish with us

Policies and ethics

Navigation