Monitoring of External Neutron Exposures

  • Chapter
  • First Online:
Handbook on Radiation Environment, Volume 2
  • 58 Accesses

Abstract

The main sources of neutrons are sealed radionuclide sources, nuclear reactors and particle accelerators (including neutron generators). Neutrons are also encountered during the enrichment of fissile materials and processing of spent fuels. Neutron sources are widely used in medicine (neutron capture therapy) and industry (oil-well logging). Neutron monitoring is therefore a subject of general interest and considerable attention is being paid for the development of improved techniques and methods for neutron monitoring. In this chapter, different techniques of neutron dosimetry particularly from the neutron monitoring point of view are discussed. In addition, calibration methodologies, performance test criteria for neutron personnel dosimeter as per the International Organisation for Standardization (ISO) are also discussed in detail. Further, techniques on criticality accident dosimetry are elaborated along with results of international inter-comparison exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 171.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ilić R, Durrani Saeed A (2003) Handbook of radioactivity analysis, solid state nuclear track detectors. In: L’Annunziata MF (ed). Academic Press, 179–237

    Google Scholar 

  2. Dorshel B, Schuricht V, Stener J (1996) The physics of radiation protection. Nucl. Techn. Publ, Ashford, p 309

    Google Scholar 

  3. Rupali P, Deepa S, Kumar V, Babu Rajesh Jayalakshmi, Bakshi AK, Chougaonkar MP, Kar S, Mayya YS, Joshi VM (2011) Present status of fast neutron personnel dosimetry system based on CR-39 solid state nuclear track detectors; BARC Report, BARC Report No. BARC/2011/E/015

    Google Scholar 

  4. Höfert M, Piesch E (1985) Neutron dosimetry with nuclear emulsions. Radiat Prot Dosim 10(1–4):189–195

    Article  Google Scholar 

  5. Bartlett DT, Bird TV, Miles JCH (1980) The NRPB nuclear emulsion dosemeter, NRPB Report No. 99

    Google Scholar 

  6. Massand OP, Singh D, Kundu HK, Marathe PK (1979) Energy dependence of Kodak NTA neutron personnel monitoring film. Int J Appl Radiat Isot 30(4):249

    Article  Google Scholar 

  7. Dhairyawan MP, Marathe PK, Massand OP (2003) Use of CR-39 solid state nuclear track detectors in neutron personnel monitoring. Radiat Meas 36(1–6):435–438

    Article  Google Scholar 

  8. Massand OP, Singh D (1982) Computed response of Kodak NTA dosimeter for moderated neutron spectra. Health Phys 42(2):226–230

    Google Scholar 

  9. Young DA (1958) Etching of radiation damage in lithium fluoride. Nature 182:365–367

    Article  ADS  Google Scholar 

  10. Fleischer RL, Buford Price P, Walker Robert M (1975) Nuclear tracks in solids. University of California Press, Berkley

    Book  Google Scholar 

  11. Azimi-garakani D, Tommasino L, Torri G (1988) Further investigation on electrochemically etched CR-39 neutron detectors. Nuclear Tracks Radiat Meas 15(1–4):309–312

    Article  Google Scholar 

  12. Tommasino L, Zapparoli G, Griffith RV (1981) Electrochemical etching mechanisms. Nucl Tracks 4:191–196

    Article  Google Scholar 

  13. Hankins DE, Westermark J (1987) Preliminary study on the use of track size distribution on electrochemically etched CR-39 foils to infer neutron spectra. Radiat Prot Dosim 20:109–112

    Article  Google Scholar 

  14. Griffith RV, Thorn Gate JH, Davidson KJ, Rueppel DW, Fisher JC (1981) Mono energetic neutron response of selected etched plastics for personnel neutron dosimetry. Radiat Prot Dosim 1(1):61–71

    Google Scholar 

  15. Tommasino L, Harrison KG (1985) Damage track detectors for neutron dosimetry: I. Registration and counting methods. Radiat Prot Dosim 10(1–4):207–217

    Google Scholar 

  16. Massand OP, Kundu HK, Marathe PK, Supe SJ (1990) Development of neutron personnel monitoring system based on CR-39 solid state nuclear track detector. BARC Report No. 1528

    Google Scholar 

  17. Tanner RJ, Bartlett DT, Hager LG (2005) Operational and dosimetric characteristics of etched–track neutron detectors in routine neutron radiation protection dosimetry. Radait Meas 40:549–559

    Article  Google Scholar 

  18. Tommmasino L (1980) Solid di-electric detectors with breakdown phenomena and their applications in radioprotection. Nuclear Instrum Methods 173:73–83

    Google Scholar 

  19. Zapparoli G, Tommasino L, Djeffal S, Maiorana A (1986) Additional results with electro-chemically etched CR-39 neutron dosemeters. Nucl Tracks 12(1–6):675–678

    Article  Google Scholar 

  20. Sathian D, Rupali R, Jayalakshmi V, Sarala N, Marathe PK, Kolekar RV, Chourasiya G, Kannan S (2009) Use of chemical etching of CR-39 foils at elevated temperature for fast neutron personnel monitoring in India. Ind J Phys 83(6):863–869

    Google Scholar 

  21. Rupali P, Jayalakshmi V, Deepa S, Chaurasiya G (2009) Dosimetric systems and characteristics of CR-39 for use in individual neutron monitoring. IEEE Trans Nucl Sci 56(6), Part: 2:3774–3778

    Google Scholar 

  22. Pal RR, Jayalakshmi V, Sathian D, Chaurasiya G, Mayya YS, Kumar V, Babu R, Joshi DG, Chadda VK (2008) Influence of automated image analysis system on the dosimetric characteristics of CR-39. J Radiat Protect Environ 31(1–4):362–364

    Google Scholar 

  23. Mckinlay AF (1981) Thermoluminescence dosimetry. Med. Phys. Handbooks, 5. Adam Hilger Ltd., Bristol

    Google Scholar 

  24. Oberhofer M, Scharmann A (eds) (1981) Applied thermoluminescence dosimetry. Adam Hilger Ltd., Bristo

    Google Scholar 

  25. Ayyangar K, Lakshmanan AR, Chandra B, Ramadas K (1974) A comparison of thermal neutron and gamma ray sensitivities of common TLD phosphors. Phys Med Biol 19:665–676

    Article  Google Scholar 

  26. Marshall M, Douglas JA, Budd T, Churchill WL (1977) A two temperature readout of thermoluminescent LiF, its properties and its uses for personnel dosimetry. Proc Conf Int Radiat Prot Assoc 4:1257–1260

    Google Scholar 

  27. Johnson TL, Luersen RB (1980) Fading of un-annealed LiF (TLD-600) for thermal neutrons and gamma rays. Health Phys 38:853–856

    Google Scholar 

  28. Nash AE, Johnson TL (1977) LiF (TLD-600) thermoluminescence detectors for mixed thermal neutron and gamma dosimetry, luminescence dosimetry. In: Proceedings of 5th international conference. Sao Paulo, Brazil, 14–17 Feb 1977, 393–403

    Google Scholar 

  29. Piesch E (1982) Albedo neutron dosimetry. Int J Appl Radiat Isot 33:1061–1076

    Article  Google Scholar 

  30. Hankins DE (1975) The effect of energy dependence on the evaluation of albedo neutron dosimeters. In: Proceedings of 9th mid-year topical symposium. Health Physics Society, Denver, CO

    Google Scholar 

  31. Hoy JE (1972) Personnel albedo neutron dosimeter with thermoluminescent 6LiF and 7LiF, Savannah River Lab., DuPont de Nemours (E.I.) and Co., Aiken, SC, Rep. DP-1277

    Google Scholar 

  32. Piesch E, Burgkhardt B (1984) A universal beta/gamma/neutron albedo dosemeter for personnel monitoring. Radiat Prot Dosim 6:281

    Article  Google Scholar 

  33. Bakshi AK, Pradhan AS, Kher RK, Srivastava K, Varadharajan G, Chatterjee S, Sathian V (2009) Study on the response of indigenously developed CaSO4:Dy phosphor-based neutron dosemeter. Radiat Prot Dosim 133(2):73–80

    Article  Google Scholar 

  34. Chiyoda Techno Glass Corporation (2008) User's manual for reading module FGD-660 (ref: AS-04-21-0010-R0)

    Google Scholar 

  35. Croft S, Weaver D (1986) The application of radiophotoluminescent glass to gamma dosimetry in mixed n-g fields. Radiat Prot Dosim 17:67–70

    Article  Google Scholar 

  36. Becker K (1965) Nuclear track registration in dosimeter glasses for neutron dosimetry in mixed radiation fields. U.S. Naval Radiological Defence Laboratory, San Francisco, Rep. USNRDL-TR-904

    Google Scholar 

  37. Piesch E, Burgkhardt B, Hofmann I (1979) Calibration of neutron detectors in radiation protection, a report on the Karlsruhe results of the European Neutron Dosimetry Intercomparison Program 1977/78, Report No. KFK-2847

    Google Scholar 

  38. EURATOM (1977) Technical recommendations for the use of radiophoto-luminescence dosimetry for individual monitoring. Commission of the European Communities, Luxembourg, Rep. EUR-5655

    Google Scholar 

  39. Piesch E (1972) Developments in radiophotoluminescence dosimetry. Topics in radiation dosimetry. In: Attix FH (ed), 461

    Google Scholar 

  40. Nourreddine A, Salem YO, Nachab A, Roy C (2015) Study of a new neutron dosimeter incorporating RPL detectors. Radiat Meas 83:47–50

    Article  Google Scholar 

  41. Ing H, Birnboim HC (1984) A bubble-damage polymer detector for neutrons. Nucl Tracks 8(1–4):285

    Google Scholar 

  42. Apfel RE, Roy SC (1985) Superheated drop detector: a possible alternative for neutron dosimetry. Neutron Dosimetry Radiat Prot Spec Issue Radiat Prot Dosim 10(1–4):327

    Article  Google Scholar 

  43. Ing H, Noulty RA, Mclean TD (1997) Bubble detectors—a maturing technology. Radait Meas 27(1):1–11

    Article  Google Scholar 

  44. Lewis BJ, Smith MB, Ing H, Andrews HR, Machrafi R, Tomi L, Matthews TJ, Veloce L, Shurshakov V, Tchernykh I, Khoshooniy N (2012) Review of bubble detector response characteristics and results from space. Radiat Prot Dosim 150(1):1–2

    Article  Google Scholar 

  45. Vaijapurkar S, Paturkar R (1995) Superheated liquid neutron sensor based on polymer matrix. Radiat Meas 24:309–313

    Article  Google Scholar 

  46. Ponraju D, Subramanian CV, Ramesh AS, Sebastian L, Viswanathan S (1999) Ultrasonic bubble counting technique for neutron dose measurements in bubble damage detectors. Radait Meas 30:471–475

    Article  Google Scholar 

  47. Akselrod GM, Akselrod MS, Benton ER, Yasuda N (2006) A novel Al2O3 fluorescent nuclear track detector for heavy charged particles and neutrons. Nucl Instr Meth B 247:296–306

    Article  ADS  Google Scholar 

  48. Akselrod MS, Yoder RC, Akselrod GM (2006) Confocal fluorescent imaging of tracks from heavy charged particles utilizing new Al2O3:C, Mg crystals. Radiat Prot Dosim 119(1–4):357–362

    Article  Google Scholar 

  49. Akselrod MS, Sykora GJ (2011) Fluorescent nuclear track detector technology—a new way to do passive solid state dosimetry. Radiat Meas 46:1671–1679

    Article  Google Scholar 

  50. Klimpki G, Mescher H, Akselrod MS, Jäkel O, Greilich S (2016) Fluence-based dosimetry of proton and heavier ion beams using single track detectors. Phys Med Biol 61:1021–1040

    Article  Google Scholar 

  51. Sykora GJ, Akselrod MS, Salasky M, Marino SA (2007) Al2O3:C, Mg fluorescence nuclear track detectors for passive neutron dosimetry. Radiat Prot Dosim 126:278–283

    Google Scholar 

  52. Sykora GJ, Salasky M, Akselrod MS (2008) Properties of novel fluorescent nuclear track detectors for use in passive neutron dosimetry. Radait Meas 43:1017–1023

    Article  Google Scholar 

  53. Sykora GJ, Akselrod MS, Vanhavere F (2009) Performance of fluorescence nuclear track detectors in monoenergetic and broad spectrum neutron fields. Radait Meas 44:988–991

    Article  Google Scholar 

  54. Aoyama T, Oka Y, Honda K, Mori C (1992) A neutron detector using silicon PIN photodiodes for personal neutron dosimetry. Nucl Instrum Methods Phys Res A314:590–594

    Article  ADS  Google Scholar 

  55. Rupali P, Singh A, Topkar A, Bakshi AK, Chougaonkar MP, Babu DAR (2013) Development and dosimetric studies of neutron pocket dosimeter in the energy range from thermal to fast. In: Proceedings of the national symposium on nuclear instrumentation, 1–4

    Google Scholar 

  56. Barelau DB, Paul D, Dubarr YB, Makovicka L, Decossas JL, Vareille JC (1992) Principles of an electronic neutron dosemeter using a PIPS detector. Radiat Prot Dosim 44:363–366

    Article  Google Scholar 

  57. Barthe J, Bord YJM, Mourgues M, Lahay ET, Boutruche B, Segur P (1994) New devices for individual neutron dosimetry. Int Works Ind Monit Villigen Radiat Prot Dosim 54:365–368

    Article  Google Scholar 

  58. Alberts WG, Dietz E, Guldbakke S, Kluge H (1994) Response of an electronic personal neutron dosemeter. Radiat Prot Dosim 57:207–210

    Article  Google Scholar 

  59. International Organization for Standardization (ISO) (2021) Reference neutron radiations—part 1: characteristics and methods of production. ISO 8529-1

    Google Scholar 

  60. International Organization for Standardization (ISO) (1998) Reference neutron radiations -Part 3: calibration of area and personal dosimeters and determination of their response as a function of neutron energy and angle of incidence. ISO 8529-3

    Google Scholar 

  61. International Organization for Standardization (ISO) (2021) Passive neutron dosimetry systems—part 1: performance and test requirements for personal dosimetry. ISO 21909-I

    Google Scholar 

  62. International Organization for Standardization (ISO) (2012) Reference radiation fields for radiation protection—definitions and fundamental concepts. ISO 29661

    Google Scholar 

  63. https://www.legislation.gov.uk/uksi/1999/3232/made/data.pdf. Accessed on 30 Nov 2023

  64. Asselineau B, Trompier F, Texier C, Itié C, Médioni R, Tikunov D, Muller H, Pelcot G (2004) Reference dosimetry measurements for the international intercomparison of criticality accident dosimetry. Radiat Prot Dosim 110(l–4):459–464

    Google Scholar 

  65. International Atomic Energy Agency (2001) The criticality accident in Sarov–Vienna. Publication STI/PUB/1106

    Google Scholar 

  66. Endo A (2010) Dose assessment in the criticality accident in Tokai-mura. Radiat Meas 45:1484–1489

    Article  Google Scholar 

  67. International Electrotechnical Commission (IEC) (2014) Radiation protection instrumentation—warning equipment for criticality accidents, 60860

    Google Scholar 

  68. American National Standard Institute (ANSI) (2017) Report No. ANSI/ANS-8.3-1997; R2003; R2012; R2017: “criticality accident alarm system”

    Google Scholar 

  69. https://en.wikipedia.org/wiki/Criticality_accident. Accessed on 30 Nov 2023

  70. Hill RL, Conrady MM (2010) PNNL results from 2009 silene criticality accident dosimeter intercomparison exercise, PNNL-19503

    Google Scholar 

  71. Bricka M, Médioni R (l982) Measurement of neutron and gamma radiation. IAEA Technical Reports Series No. 2ll. STI/DOC/l0/2ll. IAEA, Vienna, 57–82

    Google Scholar 

  72. Adams N, Dennis JA (1963) A new method of using gold foils for the investigation of the leakage spectra from critical assemblies. IAEA, Vienna

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bakshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakshi, A.K., Pal, R., Sathian, D., Dawn, S. (2024). Monitoring of External Neutron Exposures. In: Aswal, D.K. (eds) Handbook on Radiation Environment, Volume 2. Springer, Singapore. https://doi.org/10.1007/978-981-97-2799-5_7

Download citation

Publish with us

Policies and ethics

Navigation