Abstract

Microalgae are known to produce and accumulate desirable components for human consumption such as vitamins, fatty acids, protein and minerals. With the ability to grow certain species heterotrophically as well as autotrophically in different cultivation systems, such as raceways, open ponds, or closed tubular/flat plate/column bioreactors, there are a variety of cultivation options depending on space and regional limitations. Open systems are mainly used for large scale biomass production as they are cost effective and low maintenance, but due to their design they are more susceptible to contamination by other algae, grazers or bacteria. Closed, or heterotrophic systems are typically high-maintenance and therefore more expensive but allow for more controlled cultivation parameters and the production of pure, high-value compounds. As macro- and micronutrients vary greatly depending on the given cultivation conditions, such as media components, light or temperature, the ability to grow microalgae in different cultivation systems helps to establish a sustainable and nutrient-rich production of algal biomass depending on the given environment and product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ampofo J, Abbey (2022) Microalgae: bioactive composition, health benefits, safety and prospects as potential high-value ingredients for the functional food industry. Foods 11(12):S.1744. https://doi.org/10.3390/foods11121744

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25 (2):S.207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002

  • Benner P, Meier L, Pfeffer A, Krüger K, Oropeza V, José E, Weuster-Botz D (2022) Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess Biosyst Eng 45(5):S.791–813. https://doi.org/10.1007/s00449-022-02711-1

  • Bernal J, Mendiola JA, Ibáñez E, Cifuentes A (2011) Advanced analysis of nutraceuticals. J Pharm Biomed Anal 55(4):S.758–774. https://doi.org/10.1016/j.jpba.2010.11.033

  • Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S, Weindl I et al (2014) Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat Commun 5:S.3858. https://doi.org/10.1038/ncomms4858

  • Butler T, Golan Y (2020) Astaxanthin production from microalgae. In: Microalgae biotechnology for food, health and high value products. Springer, Singapore, pp S.175–242

    Google Scholar 

  • Caporgno MP, Mathys A (2018) Trends in microalgae incorporation into innovative food products with potential health benefits. Front Nutr 5:S.58. https://doi.org/10.3389/fnut.2018.00058

  • Chen G-Q, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28(9):S.607–616. https://doi.org/10.1007/s10529-006-0025-4

  • Chen W, Wang J, Ren Y, Chen H, He C, Wang Q (2021) Optimized production and enrichment of α-linolenic acid by Scenedesmus sp. HSJ296. Algal Res 60:S.102505. https://doi.org/10.1016/j.algal.2021.102505

  • Chen W, Li T, Du S, Chen H, Wang Q (2023) Microalgal polyunsaturated fatty acids: hotspots and production techniques. Front Bioeng Biotechnol 11:S.1146881. https://doi.org/10.3389/fbioe.2023.1146881

  • Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14(11):S.421–426. https://doi.org/10.1016/0167-7799(96)10060-3

  • Cho D-H, Choi J-W, Kang Z, Kim B-H, Oh H-M, Kim H-S, Ramanan R (2017) Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater. Sci Rep 7(1):S.1979. https://doi.org/10.1038/s41598-017-02139-8

  • Ciani M, Lippolis A, Fava F, Rodolfi L, Niccolai A, Tredici MR (2021) Microbes: food for the future. Foods (Basel, Switz) 10(5). https://doi.org/10.3390/foods10050971

  • Del Mondo A, Smerilli A, Sané E, Sansone C, Brunet C (2020) Challenging microalgal vitamins for human health. Microb Cell Fact 19(1):S.201. https://doi.org/10.1186/s12934-020-01459-1

  • Diaz CJ, Douglas KJ, Kang K, Kolarik AL, Malinovski R, Torres-Tiji Y et al (2022) Develo** algae as a sustainable food source. Front Nutr 9:S.1029841. https://doi.org/10.3389/fnut.2022.1029841

  • Fu W, Nelson DR, Yi Z, Xu M, Khraiwesh B, Jijakli K et al (2017) Bioactive compounds from microalgae: current development and prospects. Stud Nat Prod Chem 54:199–225. https://doi.org/10.1016/B978-0-444-63929-5.00006-1

    Article  CAS  Google Scholar 

  • Ho KKHY, Redan BW (2022) Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae. Crit Rev Food Sci Nutr 62(2):S.508–526. https://doi.org/10.1080/10408398.2020.1821598

  • International Fertilizer Industry Association (2023) Global consumption of agricultural fertilizer from 1965 to 2020, by nutrient (in million metric tons). Hg. v. International Fertilizer Industry Association. Statista Research Department. Available online: https://www.statista.com/statistics/438967/fertilizer-consumption-globally-by-nutrient/

  • Jareonsin S, Pumas C (2021) Advantages of heterotrophic microalgae as a host for phytochemicals production. Front Bioeng Biotechnol 9:S.628597. https://doi.org/10.3389/fbioe.2021.628597

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Fact 17(1):S.36. https://doi.org/10.1186/s12934-018-0879-x

  • Li J, Zhu D, Niu J, Shen S, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29(6):S.568–574. https://doi.org/10.1016/j.biotechadv.2011.04.001

  • Lin J-H, Lee D-J, Chang J-S (2015) Lutein production from biomass: marigold flowers versus microalgae. Biores Technol 184:421–428. https://doi.org/10.1016/j.biortech.2014.09.099

    Article  CAS  Google Scholar 

  • Ljubic A, Jacobsen C, Holdt SL, Jakobsen J (2020) Microalgae nannochloropsis oceanica as a future new natural source of vitamin D3. Food Chem 320:S.126627. https://doi.org/10.1016/j.foodchem.2020.126627

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):S.217–232. https://doi.org/10.1016/j.rser.2009.07.020

  • Matassa S, Verstraete W, Pikaar I, Boon N (2016) Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Res 101:137–146. https://doi.org/10.1016/j.watres.2016.05.077

    Article  CAS  Google Scholar 

  • Matos J, Cardoso C, Bandarra NM, Afonso C (2017) Microalgae as healthy ingredients for functional food: a review. Food Funct 8(8):S.2672–2685. https://doi.org/10.1039/c7fo00409e

  • Molina Grima E, Fernández FGA, Garcıa Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70(1–3):S.231–247. https://doi.org/10.1016/S0168-1656(99)00078-4

  • Morales-Sánchez D, Kyndt J, Ogden K, Martinez A (2016) Toward an understanding of lipid and starch accumulation in microalgae: a proteomic study of Neochloris oleoabundans cultivated under N-limited heterotrophic conditions. Algal Res 20:22–34. https://doi.org/10.1016/j.algal.2016.09.006

    Article  Google Scholar 

  • Morowvat MH, Ghasemi Y (2016) Culture medium optimization for enhanced β-carotene and biomass production by Dunaliella salina in mixotrophic culture. Biocatal Agr Biotechnol 7:S.217–223. https://doi.org/10.1016/j.bcab.2016.06.008

  • Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, ** X et al (2020) Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol 11:S.928. https://doi.org/10.3389/fmicb.2020.00928

  • Murthy GS (2011) Chapter 18—overview and assessment of algal biofuels production technologies. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E (eds) Biofuels. Alternative feedstocks and conversion processes. Academic Press, Amsterdam, S.415–437

    Google Scholar 

  • Narala RR, Garg S, Sharma KK, Thomas-Hall SR, Deme M, Li Y, Schenk PM (2016) Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front Energy Res 4. https://doi.org/10.3389/fenrg.2016.00029

  • Nawar A, Khoja AH, Akbar N, Ansari AA, Qayyum M, Ali E (2017) Physical abrasion method using submerged spike balls to remove algal biofilm from photobioreactors. BMC Res Notes 10(1):S.666. https://doi.org/10.1186/s13104-017-2995-9

  • Pandey A, Höfer R, Larroche C, Taherzadeh M, Nampoothiri KM (2015) Industrial biorefineries and white biotechnology. Elsevier, Amsterdam

    Google Scholar 

  • Phillips GO, Williams PA (2011) Handbook of food proteins. Elsevier Science, San Diego, CA, USA

    Book  Google Scholar 

  • Pikaar I, de Vrieze J, Rabaey K, Herrero M, Smith P, Verstraete W (2018) Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: potentials and limitations. Sci Total Environ 644:S.1525–1530. https://doi.org/10.1016/j.scitotenv.2018.07.089

  • Ravishankar GA, Ambati RR (eds) (2020) Handbook of algal technologies and phytochemicals. Volume I: food, health and nutraceutical applications. CRC Press, Boca Raton, FL. Available online: unter https://www.taylorfrancis.com/books/9780429054242

  • Richardson JW, Johnson MD, Outlaw JL (2012) Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res 1(1):S.93–100. https://doi.org/10.1016/j.algal.2012.04.001

  • Ruiz J, Wijffels RH, Dominguez M, Barbosa MJ (2022) Heterotrophic vs autotrophic production of microalgae: bringing some light into the everlasting cost controversy. Algal Res 64:S.102698. https://doi.org/10.1016/j.algal.2022.102698

  • Sahin D, Tas E, Altindag UH (2018) Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions. AMB Express 8(1):S.7. https://doi.org/10.1186/s13568-018-0540-4

  • Sandgruber F, Gielsdorf A, Baur AC, Schenz B, Müller SM, Schwerdtle T et al (2021) Variability in macro- and micronutrients of 15 commercially available microalgae powders. Marine Drugs 19(6):S.310. https://doi.org/10.3390/md19060310

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) Look back at the U.S. Department of energy’s aquatic species program: biodiesel from algae; close-out Report (National Renewable Energy Lab. (NREL), Golden, CO (United States), NREL/TP-580-24190). Available online: https://www.osti.gov/biblio/15003040

  • Sidari R, Tofalo R (2019) A comprehensive overview on microalgal-fortified/based food and beverages. Food Rev Int 35(8):S.778–805. https://doi.org/10.1080/87559129.2019.1608557

  • Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenerg 53:29–38. https://doi.org/10.1016/j.biombioe.2012.12.019

    Article  Google Scholar 

  • Smetana S, Sandmann M, Rohn S, Pleissner D, Heinz V (2017) Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresour Technol 245(Pt A):S.162–170. https://doi.org/10.1016/j.biortech.2017.08.113

  • Sui Y, Mazzucchi L, Acharya P, Xu Y, Morgan G, Harvey PJ (2021) A comparison of β-carotene, phytoene and amino acids production in Dunaliella salina DF 15 (CCAP 19/41) and Dunaliella salina CCAP 19/30 using different light wavelengths. Foods 10(11). https://doi.org/10.3390/foods10112824

  • Sutton MA, Ayyappan S (2013) Our nutrient world. The challenge to produce more food and energy with less pollution. [Global overview on nutrient management]. Centre for Ecology et Hydrology, Edinburgh

    Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):S.4021–4028. https://doi.org/10.1016/j.biortech.2007.01.046

  • Ullmann J, Grimm D (2021) Algae and their potential for a future bioeconomy, landless food production, and the socio-economic impact of an algae industry. Org Agr 11(2):S.261–267. https://doi.org/10.1007/s13165-020-00337-9

  • United Nations (2012) Feeding the world sustainably|United Nations. Available online: https://www.un.org/en/chronicle/article/feeding-world-sustainably

  • van Grinsven Hans JM, Holland M, Jacobsen BH, Klimont Z, Sutton MA, Jaap WW (2013) Costs and benefits of nitrogen for Europe and implications for mitigation. Environ Sci Technol 47(8):S.3571–3579. https://doi.org/10.1021/es303804g

  • Villaró S, Viñas I, Lafarga T (2021) Consumer acceptance and attitudes toward microalgae and microalgal-derived products as food. In: Acien G, Lafarga T, Acien G, Lafarga T (eds) Cultured microalgae for the food industry: current and potential applications. Academic Press, S.367–385

    Google Scholar 

  • Wen X, Wang Z, Ding Y, Geng Y, Li Y (2020) Enhancing the production of astaxanthin by mixotrophic cultivation of Haematococcus pluvialis in open raceway ponds. Aquacult Int 28(2):S.625–638. https://doi.org/10.1007/s10499-019-00483-2

  • Yamaguchi K (1996) Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. J Appl Phycol 8(6):S.487–502. https://doi.org/10.1007/BF02186327

  • Yin W, Xu S, Wang Y, Zhang Y, Chou S-H, Galperin MY, He J (2021) Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 47(1):S.57–78. https://doi.org/10.1080/1040841X.2020.1842325

  • Zakova T, Jirout T, Kratky L, Belohlav V (2019) Hydrodynamics as a tool to remove biofilm in tubular photobioreactor. Available online: https://www.semanticscholar.org/paper/Hydrodynamics-as-a-Tool-to-Remove-Biofilm-in-Varbanov-Walmsley/d999f40881141fda84714e3f7cbd033afac0bbce

  • Zeriouh O, Reinoso-Moreno JV, López-Rosales L, Del Cerón-García MC, Sánchez-Mirón A, García-Camacho F, Molina-Grima E (2017) Biofouling in photobioreactors for marine microalgae. Crit Rev Biotechnol 37(8):S.1006–1023. https://doi.org/10.1080/07388551.2017.1299681

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena-Sophie Bischoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bischoff, LS. (2024). Algae-Based Food Technologies. In: Kurniawan, T.A., Anouzla, A. (eds) Algae as a Natural Solution for Challenges in Water-Food-Energy Nexus. Environmental Science and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-97-2371-3_22

Download citation

Publish with us

Policies and ethics

Navigation