Subgraph Federated Learning with Global Graph Reconstruction

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Missing cross-subgraph information is a unique problem in Subgraph Federated Learning (SFL) and severely affects the performance of the learned model. Existing cutting-edge methods typically allow clients to exchange data with all other clients to predict missing neighbor nodes. However, such client-to-client data exchanges are highly complex and lead to expensive communication overhead. In this paper, we propose FedGGR: subgraph federated learning with global graph reconstruction. FedGGR is a practical and effective framework. Specifically, the core idea behind it is to directly learn a global graph on the server by a graph structure learning module instead of predicting the missing neighbors on each client. Compared to existing methods, FedGGR does not require any data exchange among clients and achieves remarkable enhancements in model performance. The experimental results on four benchmark datasets show that the proposed method excels with other state-of-the-art methods. We release our source code at https://github.com/poipoipoi233/FedGGR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kong, X., Gao, H., Shen, G., Duan, G., Das, S.K.: FedVCP: a federated-learning-based cooperative positioning scheme for social internet of vehicles. IEEE Trans. Comput. Soc. Syst. 9(1), 197–206 (2021)

    Article  Google Scholar 

  2. Hou, M., **a, F., Gao, H., Chen, X., Chen, H.: Urban region profiling with spatio-temporal graph neural networks. IEEE Trans. Comput. Soc. Syst. 9(6), 1736–1747 (2022)

    Article  Google Scholar 

  3. **a, J., et al.: Mole-BERT: rethinking pre-training graph neural networks for molecules. In: The Eleventh International Conference on Learning Representations, pp. 1–18 (2023)

    Google Scholar 

  4. Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)

    Article  Google Scholar 

  5. **a, F., et al.: CenGCN: centralized convolutional networks with vertex imbalance for scale-free graphs. IEEE Trans. Knowl. Data Eng. 35(5), 4555–4569 (2022)

    Google Scholar 

  6. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  7. Kong, X., et al.: A federated learning-based license plate recognition scheme for 5G-enabled internet of vehicles. IEEE Trans. Ind. Inf. 17(12), 8523–8530 (2021)

    Article  Google Scholar 

  8. Chen, F., Li, P., Miyazaki, T., Wu, C.: Fedgraph: federated graph learning with intelligent sampling. IEEE Trans. Parallel Distrib. Syst. 33(8), 1775–1786 (2021)

    Article  Google Scholar 

  9. Yao, Y., Joe-Wong, C.: FedGCN: convergence and communication tradeoffs in federated training of graph convolutional networks, pp. 1–31 (2022). ar**v preprint ar**v:2201.12433

  10. Zhang, K., Yang, C., Li, X., Sun, L., Yiu, S.M.: Subgraph federated learning with missing neighbor generation. Adv. Neural. Inf. Process. Syst. 34, 6671–6682 (2021)

    Google Scholar 

  11. Peng, L., Wang, N., Dvornek, N., Zhu, X., Li, X.: FedNI: federated graph learning with network inpainting for population-based disease prediction. IEEE Trans. Med. Imaging 1–12 (2022)

    Google Scholar 

  12. Gupta, O., Raskar, R.: Distributed learning of deep neural network over multiple agents. J. Netw. Comput. Appl. 116, 1–8 (2018)

    Article  Google Scholar 

  13. Baek, J., Jeong, W., **, J., Yoon, J., Hwang, S.J.: Personalized subgraph federated learning, pp. 1–20 (2022). ar**v preprint ar**v:2206.10206

  14. Zhang, T., Chen, C., Chang, Y., Shu, L., Zheng, Z.: FedEgo: privacy-preserving personalized federated graph learning with ego-graphs, pp. 1–25 (2022). ar**v preprint ar**v:2208.13685

  15. Liu, Y., Zheng, Y., Zhang, D., Chen, H., Peng, H., Pan, S.: Towards unsupervised deep graph structure learning. In: Proceedings of the ACM Web Conference 2022, pp. 1392–1403 (2022)

    Google Scholar 

  16. Fatemi, B., El Asri, L., Kazemi, S.M.: SLAPS: self-supervision improves structure learning for graph neural networks. Adv. Neural. Inf. Process. Syst. 34, 22667–22681 (2021)

    Google Scholar 

  17. Chen, F., Long, G., Wu, Z., Zhou, T., Jiang, J.: Personalized federated learning with a graph. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 2575–2582 (2022)

    Google Scholar 

  18. Zhao, G., Huang, Y., Tsai, C.H.: FedGSL: federated graph structure learning for local subgraph augmentation. In: 2022 IEEE International Conference on Big Data (Big Data), pp. 818–824. IEEE (2022)

    Google Scholar 

  19. Thapa, C., Arachchige, P.C.M., Camtepe, S., Sun, L.: SplitFed: when federated learning meets split learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 8485–8493 (2022)

    Google Scholar 

  20. Meng, C., Rambhatla, S., Liu, Y.: Cross-node federated graph neural network for spatio-temporal data modeling. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1202–1211 (2021)

    Google Scholar 

  21. Yi, J., Wu, F., Wu, C., Liu, R., Sun, G., **e, X.: Efficient-FedRec: efficient federated learning framework for privacy-preserving news recommendation. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 2814–2824 (2021)

    Google Scholar 

  22. Kipf, T.N., Welling, M.: Variational graph auto-encoders, pp. 1–3 (2016). ar**v preprint ar**v:1611.07308

  23. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, pp. 1–14 (2017)

    Google Scholar 

  24. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: 4th International Conference on Learning Representations, pp. 1–14 (2016)

    Google Scholar 

  25. **e, Y., et al.: FederatedScope: a flexible federated learning platform for heterogeneity. Proc. VLDB Endow. 16(5), 1059–1072 (2023)

    Article  Google Scholar 

  26. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–106 (2008)

    Google Scholar 

  27. Namata, G., London, B., Getoor, L., Huang, B., Edu, U.: Query-driven active surveying for collective classification. In: 10th International Workshop on Mining and Learning with Graphs, vol. 8, pp. 1–8 (2012)

    Google Scholar 

  28. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation, pp. 1–11 (2018). ar**v preprint ar**v:1811.05868

  29. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  30. Wang, X., Zhu, M., Bo, D., Cui, P., Shi, C., Pei, J.: AM-GCN: adaptive multi-channel graph convolutional networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1243–1253 (2020)

    Google Scholar 

  31. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: 6th International Conference on Learning Representations, pp. 1–12 (2018)

    Google Scholar 

  32. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural. Inf. Process. Syst. 30, 1–11 (2017)

    Google Scholar 

  33. **e, H., Ma, J., **ong, L., Yang, C.: Federated graph classification over MNon-IID graphs. Adv. Neural. Inf. Process. Syst. 34, 18839–18852 (2021)

    Google Scholar 

  34. Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized pagerank graph neural network. In: 9th International Conference on Learning Representations, pp. 1–24 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxin Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z. et al. (2024). Subgraph Federated Learning with Global Graph Reconstruction. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14331. Springer, Singapore. https://doi.org/10.1007/978-981-97-2303-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2303-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2302-7

  • Online ISBN: 978-981-97-2303-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation