Structure and Electrochemical Properties of Graphene, Derivatives, and Its Nanocomposites

  • Chapter
  • First Online:
Electrochemical Exfoliation of Graphene and Its Derivatives

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 44 Accesses

Abstract

Graphene is a form of carbon with a two-dimensional structure organized in a plane and looks like a honeycomb network. Graphene may assist the amount of electricity passing more than six times higher than copper. Graphene possesses good electrical, mechanical, and thermal characteristics along with other unlikeness-like magnitude relations with great specific surface area compared to other nanoparticles. Additionally, to provide an acceptable possibility of mechanical support, still, there are probabilities of being used to regulate functional features including impermeability to gases, expansion, and stability. Graphene sheets have a higher surface area-to-volume ratio with exceptional electronic transport features. These characteristics guarantee graphene to be used in various areas like solar cells, sensors, batteries, membranes, medicines, supercapacitors, and hydrogen storage. Develo** composites of graphene contributes a lot to their application. The electrochemical properties of graphene rely on their surface charge and how electrons move conveniently in graphene electrodes; this was examined by using redox reaction and potassium ferricyanide. Furthermore, the unlikeness features of graphene and its derivatives (such as graphene oxide, graphene quantum dots, reduced graphene oxide, graphane, graphone, graphyne, graphdiyne, and fluorographene) bring more awareness to probable significance in several dimensions like Nanobiotechnology, biomedicine, and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 119.83
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam, S.N., Sharma, N., Kumar, L.: Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6(1), 1–18 (2017)

    Article  Google Scholar 

  • Ambrosi, A., Chua, C.K, Bonanni, A., Pumera, M.: Electrochemistry of graphene and related materials. Chem. Rev. 114(14), 7150–7188 (2014). https://doi.org/10.1021/cr500023c

  • Banerjee, A.N.: Graphene and its derivatives as biomedical materials: future prospects and challenges. Interface Focus 8(3), 20170056 (2018)

    Article  Google Scholar 

  • Bilisik, K., Akter, M.: Graphene nanocomposites: A review on processes, properties, and applications. J. Ind. Text. 51(3_suppl), 3718S-3766S (2022)

    Google Scholar 

  • Boehm, H.P., Setton, R., Stumpp, E.: Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994). Pure Appl. Chem. 66(9), 1893–1901 (1994). https://doi.org/10.1351/pac199466091893

    Article  Google Scholar 

  • Bostwick, A., McChesney, J., Ohta, T., Rotenberg, E., Seyller, T., Horn, K.: Experimental studies of the electronic structure of graphene. Progress Surf. Sci. 84(11–12), 380–413 (2009). https://doi.org/10.1016/j.progsurf.2009.08.002

  • Boukhvalov, D.W.: Stable antiferromagnetic graphone. Physica E E 43(1), 199–201 (2010)

    Article  Google Scholar 

  • Chaudhary, K., Kumar, K., Venkatesu, P., Masram, D.T.: Protein immobilization on graphene oxide or reduced graphene oxide surface and their applications: Influence over activity, structural and thermal stability of protein. Adv. Coll. Interface. Sci. 289, 102367 (2021)

    Article  Google Scholar 

  • Chen, Y., Zhang, B., Liu, G., Zhuang, X., Kang, E.T.: Graphene and its derivatives: switching ON and OFF. Chem. Soc. Rev. 41(13), 4688–4707 (2012)

    Article  Google Scholar 

  • Cheng, Y., Lu, S., Zhang, H., Varanasi, C.V., Liu, J.: Synergistic effects from graphene and carbon nanotubes enable flflexible and robust electrodes for high-performance supercapacitors. Nano Lett. 12, 4206–4211 (2012)

    Article  Google Scholar 

  • Chu, C.-Y., Tsai, J.-T., Sun, C.-L.: Synthesis of PEDOT-modifified graphene composite materials as flflexible electrodes for energy storage and conversion applications. Int. J. Hydrogen Energy 37, 13880–13886 (2012)

    Article  Google Scholar 

  • Cong, H.-P., Ren, X.-C., Wang, P., Yu, S.-H.: Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 6, 1185–1191 (2013)

    Article  Google Scholar 

  • De Marchi, L., Pretti, C., Gabriel, B., Marques, P.A., Freitas, R., Neto, V.: An overview of graphene materials: properties, applications and toxicity on aquatic environments. Sci. Total Environ. 1(631), 1440–1456 (2018). BibTeX EndNote RefMan RefWorks, https://doi.org/10.1155/2014/890246

  • Dhand, V., Rhee, K.Y., Kim, H.J., Jung, D.H.: A comprehensive review of graphene nanocomposites: research status and trends. J. Nanomater.nanomater. 2013, 158–158 (2013)

    Google Scholar 

  • Feng, L., Zhang, W.X.: The structure and magnetism of graphone. AIP Adv. 2(4), 042138 (2012)

    Article  Google Scholar 

  • Flores, M.Z., Autreto, P.A., Legoas, S.B., Galvao, D.S.: Graphene to graphane: a theoretical study. Nanotechnology 20(46), 465704 (2009)

    Article  Google Scholar 

  • Gao, X., Liu, H., Wang, D., Zhang, J.: Graphdiyne: synthesis, properties, and applications. Chem. Soc. Rev. 48(3), 908–936 (2019)

    Article  Google Scholar 

  • Geim A.K., Novoselov K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849

  • Gómez-Navarro, C., Meyer, J.C., Sundaram, R. S., Chuvilin, A., Kurasch, S., Burghard, M., et al.: Atomic structure of reduced graphene oxide. Nano Lett. 10(4), 1144–1148 (2010)

    Google Scholar 

  • Grajek, H., Jonik, J., Witkiewicz, Z., Wawer, T., PurchaÅ‚a, M.: Applications of graphene and its derivatives in chemical analysis. Crit. Rev. Anal. Chem. 50(5), 445–471 (2020)

    Article  Google Scholar 

  • Habte, A.T., Ayele, D.W.: Synthesis and characterization of reduced graphene oxide (rGO) started from graphene oxide (GO) using the tour method with different parameters. Adv. Mater. Sci. Eng. (2019)

    Google Scholar 

  • Huang, C., Li, Y., Wang, N., Xue, Y., Zuo, Z., Liu, H., Li, Y.: Progress in research into 2D graphdiyne-based materials. Chem. Rev. 118(16), 7744–7803 (2018)

    Article  Google Scholar 

  • Ibrahim, A., Klopocinska, A., Horvat, K., Abdel, H.Z.: Graphene-based nanocomposites: synthesis, mechanical properties, and characterizations. Polymers (basel) 13(17), 2869 (2021). https://doi.org/10.3390/polym13172869.PMID:34502909;PMCID:PMC8434110

    Article  Google Scholar 

  • Jia, Z., Li, Y., Zuo, Z., Liu, H., Huang, C., Li, Y.: Synthesis and properties of 2D carbon graphdiyne. Acc. Chem. Res. 50(10), 2470–2478 (2017)

    Article  Google Scholar 

  • Jiang, L.-L., Lu, X., **e, C.-M., Wan, G.-J., Zhang, H.-P., Youhong, T.: Flexible, free-standing TiO2 -graphene-polypyrrole composite films as electrodes for supercapacitors. J. Phys. Chem. C 119, 3903–3910 (2015)

    Article  Google Scholar 

  • Karaphun, A., Phrompet, C., Tuichai, W., Chanlek, N., Sriwong, C., Ruttanapun, C.: The influence of annealing on a large specific surface area and enhancing electrochemical properties of reduced graphene oxide to improve the performance of the active electrode of supercapacitor devices. Mater. Sci. Eng. B 264, 114941 (2021)

    Article  Google Scholar 

  • Krishnan, S.K., Singh, E., Singh, P., Meyyappan, M., Nalwa, H.S.: A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 9(16), 8778–8881 (2019)

    Article  Google Scholar 

  • Kumar, S., Prakash, J., Verma, A., Jasrotia, R., Kandwal, A., Verma, R., et al.: A review on properties and environmental applications of graphene and its derivative-based composites. Catalysts 13(1), 111 (2023)

    Google Scholar 

  • Lee, X.J., Hiew, B.Y.Z., Lai, K.C., Lee, L.Y., Gan, S., Thangalazhy-Gopakumar, S., Rigby, S.: Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 98, 163–180 (2019)

    Article  Google Scholar 

  • Liu, C., Tan, D., Chen, X., Liao, J., Wu, L.: Research on graphene and its derivativesin oral disease treatment. Int. J. Mol. Sci. 23(9), 4737 (2022)

    Article  Google Scholar 

  • Loryuenyong, V., Totepvimarn, K., Eimburanapravat, P., Boonchompoo, W., Buasri, A.: Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv. Mater. Sci. Eng. (2013)

    Google Scholar 

  • Mbayachi, V.B., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E.R.: Graphene synthesis, characterization and its applications: a review. Results Chem. 3, 100163 (2021)

    Google Scholar 

  • Moon, I.K., Lee, J., Ruoff, R.S., Lee, H.: Reduced graphene oxide by chemical graphitization. Nat. Commun.commun. 1(1), 1–6 (2010)

    Google Scholar 

  • Pan, D., Zhang, J., Li, Z., Wu, M.: Adv. Mater. 22, 734 (2010); Abdolhosseinzadeh, S., Asgharzadeh, H., Kim, H.S.: Fast and fully–scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 10160 (2015)

    Google Scholar 

  • Peng, Q., Dearden, A.K., Crean, J., Han, L., Liu, S., Wen, X., De, S.: New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 1–29 (2014)

    Google Scholar 

  • Ponnamma, D., Yin, Y., Salim, N., Parameswaranpillai, J., Thomas, S., Hameed, N.: Recent progress and multifunctional applications of 3D printed graphene nanocomposites. Compos. B Eng. 204, 108493 (2021)

    Article  Google Scholar 

  • Randviir, E.P., Brownson, D.A., Banks, C.E.: A decade of graphene research: production, applications and outlook. Mater. Today 17(9), 426–432 (2014). https://doi.org/10.1016/j.mattod.2014.06.001

    Article  Google Scholar 

  • Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z., Sheehan, P.E.: Reduced graphene oxide molecular sensors. Nano Lett. 8(10), 3137–3140 (2008)

    Article  Google Scholar 

  • Ryu, S., Han, M.Y., Maultzsch, J., Heinz, T.F., Kim, P., Steigerwald, M.L., Brus, L.E.: Reversible basal plane hydrogenation of graphene. Nano Lett. 8(12), 4597–4602 (2008)

    Article  Google Scholar 

  • Sahin, H., Leenaerts, O., Singh, S.K., Peeters, F.M.: Graphane. Wiley Interdisciplinary Rev.: Comput. Mol. Sci. 5(3), 255–272 (2015)

    Google Scholar 

  • Satheesh, K., Jayavel, R.: Synthesis and electrochemical properties of reduced graphene oxide via chemical reduction using thiourea as a reducing agent. Mater. Lett. 113, 5–8 (2013)

    Article  Google Scholar 

  • Seabra, A.B., Paula, A.J., de Lima, R., Alves, O.L., Durán, N.: Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol.toxicol. 27(2), 159–168 (2014)

    Article  Google Scholar 

  • Smith, A.T., LaChance, A.M., Zeng, S., Liu, B., Sun, L.: Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 1(1), 31–47 (2019). https://doi.org/10.1016/j.nanoms.2019.02.004

  • Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75(15), 153401 (2007)

    Article  Google Scholar 

  • Su, C., Loh, K.P.: Carbocatalysts: graphene oxide and its derivatives. Acc. Chem. Res. 46(10), 2275–2285 (2013)

    Article  Google Scholar 

  • Sur, U.K.: Graphene: a rising star on the horizon of materials science. Int. J. Electrochem. (2012). https://doi.org/10.1155/2012/237689, https://shodhganga.inflibnet.ac.in:8443/jspui/handle/10603/359974?mode=full, http://hdl.handle.net/10603/359974

  • Tang, L., Wang, Y., Li, Y., Feng, H., Lu, J., Li, J.: Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Func. Mater. 19(17), 2782–2789 (2009b)

    Article  Google Scholar 

  • Tang, L., Wang, Y., Li, Y., Feng, H., Lu, J., Li, J.: Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19(17), 2782–2789 (2009). https://doi.org/10.1002/adfm.200900377

  • Tarcan, R., Todor-Boer, O., Petrovai, I., Leordean, C., Astilean, S., Botiz, I.: Reduced graphene oxide today. J. Mater. Chem. C 8(4), 1198–1224 (2020)

    Article  Google Scholar 

  • Tian, P., Tang, L., Teng, K.S., Lau, S.P.: Graphene quantum dots from chemistry to applications. Mater. Today Chem. 10, 221–258 (2018)

    Article  Google Scholar 

  • Tiwari, S.K., et al.: Graphene research and their outputs: Status and prospect. J. Sci.: Adv. Mater. Dev. (2020). https://doi.org/10.1016/j.jsamd.2020.01.006

  • Wang, M., Yan, C., Ma, L.: Graphene nanocomposites. Compos. Their Prop. (2012). https://doi.org/10.5772/50840

  • Yan, Y., Gong, J., Chen, J., Zeng, Z., Huang, W., Pu, K., et al.: Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv. Mater. 31(21), 1808283 (2019)

    Google Scholar 

  • Yang, G., Li, L., Lee, W.B., Ng, M.C.: Structure of graphene and its disorders: a review. Sci. Technol. Adv. Mater. 19(1), 613–648 (2018). https://doi.org/10.1080/14686996.2018.1494493

  • Yoo, D., Kim, J., Kim, J.H.: Direct synthesis of highly conductive poly (3,4-ethylenedioxythiophene): Poly (4-styrenesulfonate) (PEDOT: PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 7, 717–730 (2014)

    Article  Google Scholar 

  • Zhang, Z., **ao, F., Qian, L., **ao, J., Wang, S., Liu, Y.: Facile Synthesis of 3D MnO2-Graphene and Carbon Nanotube-Graphene (2014)

    Google Scholar 

  • Zhen, Z., Zhu, H.: Structure and properties of graphene. In: Graphene, pp. 1–12. Academic (2018). https://doi.org/10.1016/B978-0-12-812651-6.00001-X

  • Zhou, Q., Yao, H.: Recent development of carbon electrode materials for electrochemical supercapacitors. Energy Rep. 8, 656–661 (2022). https://doi.org/10.1016/j.egyr.2022.09.167

  • Zhou, X., Huang, X., Qi, X., Wu, S., Xue, C., Boey, F.Y., et al.: In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 113(25), 10842–10846 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Kaushal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Florien, N. et al. (2024). Structure and Electrochemical Properties of Graphene, Derivatives, and Its Nanocomposites. In: Khan, R., Kumar, N., Sadique, M.A., Parihar, A. (eds) Electrochemical Exfoliation of Graphene and Its Derivatives. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-2128-3_4

Download citation

Publish with us

Policies and ethics

Navigation