Advantages of Electrochemical Exfoliation Method Over Conventional Methods

  • Chapter
  • First Online:
Electrochemical Exfoliation of Graphene and Its Derivatives

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Graphene and its derivatives received considerable interest for various technological uses due to their exceptional characteristics such as mechanical strength, physical properties, and excellent electrical conductivities. The preparation of these important materials for a particular purpose is very important. Graphene synthesis can be performed by top-down (mechanical, and chemical exfoliation, and chemical synthesis) and bottom-up (chemical vapour deposition, pyrolysis, epitaxial growth, and arc discharge methods) approaches. The top-down approach is the division of large precursors into small particles while the bottom-up is the buildup of small carbon based materials to form graphene structure. The later method gives the product with good quality than the first one but needs well-developed operational facilities and systems and thus it is relatively expensive. However, electrochemical exfoliation as a top-down route is simple, fast, easy controllable and scalable to give the desired products under mild conditions. Thus, this chapter presents the advantage of electrochemical exfoliation over the conventional approaches (bottom-up and top-down). Based on the literature reports, the benefits and drawbacks of each graphene preparation method will be discussed and forwarded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkader, A.M., Cooper, A.J., Dryfe, R.A.W., Kinloch, I.A.: How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 7, 6944–6956 (2015)

    Article  Google Scholar 

  • Achee, T.C., Sun, W., Hope, J.T., Quitzau, S.G., Sweeney, C.B., Shah, S.A., Habib, T., Green, M.J.: High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Sci. Rep. 8, 14525 (2018)

    Google Scholar 

  • Adetayo, A., Runsewe, D.: Synthesis and fabrication of graphene and graphene oxide: a review. Open J. Compos. Mater. 9, 207–229 (2019)

    Google Scholar 

  • Aghamohammadi, H., Eslami-Farsani, R., Torabian, M., Amousa, N.: Recent advances in one-pot functionalization of graphene using electrochemical exfoliation of graphite: a review study. Synth. Met. 269, 116549 (2020)

    Article  Google Scholar 

  • Akimoto, T., Ueno, K.: High crystallinity multilayer graphene deposited by a low-temperature CVD using Ni catalyst with applying current. In: Electron Devices Technology and Manufacturing Conference (EDTM), pp. 351–353 (2019)

    Google Scholar 

  • Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2009)

    Article  Google Scholar 

  • Badri, M.A.S., Salleh, M.M., MdNoor, N.F., Rahman, M.Y.A., Umar, A.A.: Green synthesis of few-layered graphene from aqueous processed graphite exfoliation for graphene thin film preparation. Mater. Chem. Phys. 193, 212–219 (2017)

    Article  Google Scholar 

  • Baig, Z., Mamat, O., Mustapha, M., Mumtaz, A., Munir, K., Sarfraz, M.: Investigation of tip sonication effects on the structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion. Ultrason. Sonochem.. Sonochem. 45, 133–149 (2018)

    Article  Google Scholar 

  • Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H.: First, P.N., deHeer, W.A.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B. 108(52), 19912–19916 (2004)

    Google Scholar 

  • Betancur, A.F., Ornelas-Soto, N., Garay-Tapia, A.M., Perez, F.R., Salazar, A., García, A.G.: A general strategy for direct synthesis of reduced graphene oxide by chemical exfoliation of graphite. Mater. Chem. Phys. 218, 51–61 (2018)

    Google Scholar 

  • Bhuyan, M.S.A., Uddin, M.N., Islam, M.M., Bipasha, F.A., Hossain, S.S.: Synthesis of graphene. Int. Nano Lett. 6, 65–83 (2016)

    Google Scholar 

  • Boas, C.R.S.V., Focassio, B., Marinho, E., Larrude, D.G., Salvadori, M.C., Leao, C.R., Dos Santos, D.J.: Characterization of nitrogen doped graphene bilayers synthesized by fast, low temperature microwave plasma-enhanced chemical vapour deposition. Sci. Rep. 9, 13715 (2019)

    Google Scholar 

  • Borovikov, V., Zangwill, A.: Step-edge instability during epitaxial growth of graphene from SiC(0001). Phys. Rev. B 80(12), 121406(R) (2009)

    Article  Google Scholar 

  • Brodie, B.C.: Sur le poids atomique du graphite. Ann. Chim. Phys. 59, 466–472 (1860)

    Google Scholar 

  • Chen, H., Müller, M.B., Gilmore, K.J., Wallace, G.G., Li, D.: Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20(18), 3557–3561 (2008)

    Article  Google Scholar 

  • Chen, J., Duan, M., Chen, G.: Continuous mechanical exfoliation of graphene sheets via a three-roll mill. J. Mater. Chem. 22(37), 19625 (2012)

    Article  Google Scholar 

  • Chen, M., Haddon, R.C., Yan, R., Bekyarova, E.: Advances in transferring chemical vapour deposition graphene: a review. Mater. Horiz. 4, 1054–1063 (2017)

    Article  Google Scholar 

  • Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State 35(1), 52–71 (2010)

    Google Scholar 

  • Copel, M., Reuter, M.C.: Surfactants in epitaxial growth. Phys. Phys. Lett. 63, 632–635 (1989)

    Article  Google Scholar 

  • Dang, M.N., Nguyen, T.H., Nguyen, T.V., Thu, T.V., Le, H., Akabori, M., Ito, N., Nguyen, H.Y., Lu, T., Nguyen, T.H., Nguyen, V.T., Phan, N.H.: One-pot synthesis of manganese oxide/graphene composites via a plasma-enhanced electrochemical exfoliation process for supercapacitors. Nanotechnology 31, 345401 (2020)

    Article  Google Scholar 

  • Edwards, R.S., Coleman, K.S.J.N.: Graphene synthesis: relationship to applications. 5(1), 38–51 (2013)

    Google Scholar 

  • Fang, X., Donahue, J., Shashurin, A., Keidar, M.: Plasma-based graphene functionalization in glow discharge. J. Appl. Phys. 4, 1 (2015)

    Google Scholar 

  • Fathy, M., Abdel, T.: Incorporation of multi-walled carbon nanotubes in microspheres used as anion exchange resin via suspension polymerization. Appl. Nanosci. 4, 543–549 (2014)

    Article  Google Scholar 

  • Gao, E., Lin, S.Z., Qin, Z., Buehler, M.J., Feng, X.Q., Xu, Z.: Mechanical exfoliation of two-dimensional materials. J. Mech. Phys. Solids 115, 248–262 (2018)

    Article  MathSciNet  Google Scholar 

  • Guker, O., Guler, S.H., Selen, V., Albayrak, M.G., Evin, E.: Production of graphene layer by liquid-phase exfoliation with low sonication power and sonication time from synthesized expanded graphite. Fuller Nanotubes Carbon Nanostruct. 24, 123–127 (2016)

    Article  Google Scholar 

  • Guo, S., Dong, S.: Graphene nanosheets: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40(5), 2644–2672 (2011)

    Article  Google Scholar 

  • Guo, H.L., Wang, X.F., Qian, Q.Y., Wang, F.B., **a, X.H.: A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9), 2653–2659 (2009)

    Article  Google Scholar 

  • Gupta, B., Notarianni, M., Mishra, N., Shalei, M., Lacopi, F., Motta, N.: Evolution of epitaxial graphene layers on 3C SiC (111) as a function of annealing temperature in UHV. Carbon 68, 563–572 (2014)

    Article  Google Scholar 

  • Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)

    Article  Google Scholar 

  • Hussien, N.A., Isklan, N., Turk, M.: Aptamer-functionalized magnetic graphene oxide nanocarrier for targeted drug delivery of pacilitaxel. Mater. Chem. Phys. 211, 479–488 (2018)

    Article  Google Scholar 

  • Ikram, M., Raza, A., Ali, S., Ali, S.: Electrochemical exfoliation of 2D advanced carbon derivatives. In: Ikram, M., Maqsood, A. (eds.) 21st Century Advanced Carbon Materials for Engineering Applications—A Comprehensive Handbook. Intech Open, London (2020). https://doi.org/10.5772/intechopen.94892

  • Illakkiya, J.T., Rajalakshmi, P.U., Oommen, R.: Nebulized spray pyrolysis: a new method for synthesis of graphene film and their characteristics. Surf. Coat. Technol. 307, 65–72 (2016)

    Article  Google Scholar 

  • Jia, K., Ci, H., Zhang, J., Sun, Z., Ma, Z., Zhu, Y., Liu, S., Liu, J., Sun, L., Liu, X., Sun, J., Yin, W., Peng, H., Lin, L., Liu, Z.: Superclean growth of graphene using a cold-wall chemical vapor deposition approach. Angew. Chem. Int. Ed.. Chem. Int. Ed. 59(39), 17214–17218 (2020)

    Article  Google Scholar 

  • Jilani, A., Othman, M.H.D., Ansari, M.O., Hussain, S.Z., Ismail, A.F., Khan, I.U., Inamuddin.: Graphene and its derivatives: synthesis, modifications, and applications in wastewater treatment. Environ. Chem. Lett. 16, 1301–1323 (2018)

    Google Scholar 

  • Juang, Z.Y., Wu, C.Y., Lo, C.W., Chen, W.Y., Huang, C.F., Hwang, J.C., Chen, F.R., Leou, K.C., Tsai, C.H.: Synthesis of graphene on silicon carbide substrates at low temperature. 47(8), 2026–2031 (2009)

    Google Scholar 

  • Kamali, A.R., Fray, D.J.: Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon 56, 121–131 (2013)

    Article  Google Scholar 

  • Kane, A., Barry, A.H., Chérif, S.M., Farhat, S.: Few-layered graphene synthesis by the arc-discharge method. In: Proceeding des JIC2019—Proceeding of the JIC2019, vol. 02, pp. 30–36 (2020)

    Google Scholar 

  • Katariya, S.M.: Review on: synthesis approaches and applications of graphene and its derivatives. Int. J. Res. Tre. Innov. (IJRTI) 7(4), 1–6 (2022)

    Google Scholar 

  • Kong, X., Zhu, Y., Lei, H., Wang, C., Zhao, Y., Huo, E., Lin, X., Zhang, Q., Qian, M., Mateo, W., Zou, R., Fang, Z., Ruan, R.: Synthesis of graphene-like carbon from biomass pyrolysis and its applications. Chem. Eng. J. 399, 125808 (2020)

    Google Scholar 

  • Kumar, R., Singh, R.K., Kumar, P., Dubey, P.K., Tiwari, R.S., Srivastava, O.N.: Clean and efficient synthesis of graphene nanosheets and rectangular aligned-carbon nanotube bundles using green botanical hydrocarbon precursor: Sesame oil. Sci. Adv. Mater. 6(1), 76–83 (2014)

    Article  Google Scholar 

  • Lang, B.A.: LEED study of the deposition of carbon on platinum crystal surfaces. Surf. Sci. 53(1), 317–329 (1975)

    Article  Google Scholar 

  • Lee, X.J., Hiew, B.Y.Z., Lai, K.C., Lee, L.Y., Gan, S., Thangalazhy-Gopakumar, S., Rigby, S.: Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J. Tai. Inst. Chem. Eng. 98, 163–180 (2019)

    Article  Google Scholar 

  • Li, X.S., Cai, W.W., An, J.H., Kim, S., Nah, J., Yang, D.X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  Google Scholar 

  • Li, N., Wang, Z., Zhao, K., Shi, Z., Gu, Z., Xu, S.: Large-scale synthesis of N-doped multi-layered graphene sheets by the simple arc-discharge method. Carbon 48, 255–259 (2010)

    Article  Google Scholar 

  • Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., Chen, J.: One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Func. Mater. 18(10), 1518–1525 (2008)

    Article  Google Scholar 

  • Liu, M., Zhang, X., Wu, W., Liu, T., Liu, Y., Guo, B., Zhang, R.: One-step chemical exfoliation of graphite to ∼100% few-layer graphene with high quality and large size at ambient temperature. Chem. Eng. J. 355, 181–185 (2019)

    Article  Google Scholar 

  • Liu, W.W., Aziz, A.: Review on the effects of electrochemical exfoliation parameters on the yield of graphene Oxide. 7(38), 33719–33731 (2022)

    Google Scholar 

  • Lu, X., Yu, M., Huang, H., Ruoff, R.S.: Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10, 269–272 (1999)

    Article  Google Scholar 

  • Luheng, W., Tianhuai, D., Peng, W.J.C.: Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. 47(14), 3151–3157 (2009)

    Google Scholar 

  • MaAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prudhomme, R.K., Aksay, I.A.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–404 (2007)

    Google Scholar 

  • Manukyan, K.V., Rouvimov, S., Wolf, E.E., Mukasyan, A.S.: Combustion synthesis of graphene materials. Carbon 62, 302–3011 (2013)

    Article  Google Scholar 

  • Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    Article  Google Scholar 

  • Mishra, N., Boecki, J., Motta, N., Lacopi, F.: Graphene growth on silicon carbide: a review. Phys. Status Solidi A 213, 2269–2289 (2016)

    Article  Google Scholar 

  • Moser, J., Barreiro, A., Bachtold, A.: Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007)

    Article  Google Scholar 

  • Muramatsu, H., Kim, Y.A., Yang, K.S., Cruz-Silva, R., Toda, I., Yamada, T., Terrones, M., Endo, M., Hayashi, T., Saitoh, H.: Rice husk-derived graphene with nano-sized domains and clean edges. Small 10, 2766–2770 (2014)

    Article  Google Scholar 

  • Ni, Z., Wang, Y., Yu, T., Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res. 1(4), 273–291 (2008)

    Article  Google Scholar 

  • Norimatsu, W., Kusunoki, M.: Epitaxial graphene on SiC {0001}: advances and perspectives. Phys. Chem. Chem. Phys. 16(8), 3501–3511 (2014)

    Article  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  Google Scholar 

  • Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)

    Article  Google Scholar 

  • Park, S.W., Jang, B., Kim, H., Lee, J., Park, J.Y., Kang, S.O., Choa, Y.H.: Highly water-dispersible graphene nanosheets from electrochemical exfoliation of graphite. Front. Chem. 9, 699231 (2021)

    Article  Google Scholar 

  • Parvez, K., Li, R., Puniredd, S.R., Hernandez, Y., Hinkel, F., Wang, S., Feng, X., Mullen, K.: Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7(4), 3598–3606 (2013)

    Article  Google Scholar 

  • Pirzado, A., Le Normand, F., Romero, T., Paszkiewicz, S., Papaefthimiou, V., Ihiawakrim, D., Janowska, I.: Few-layer graphene from mechanical exfoliation of graphite-based materials: structure-dependent characteristics. Chem. Eng. 3, 37–47 (2019)

    Google Scholar 

  • Rao, C.N.R., Sood, A.K.: Graphene: Synthesis, Properties, and Phenomena. Wiley, Weinheim, Germany (2013)

    Google Scholar 

  • Ravani, F., Papagelis, K., Dracopoulos, V., Parthenios, J., Dassios, K.G., Siokou, A., Galiotis, C.: Graphene production by dissociation of camphor molecules on a nickel substrate. Thin Solid Films 527, 31–37 (2013)

    Article  Google Scholar 

  • Riedi, C., Coletti, C., Starke, U.: Structural and electronic properties of epitaxial graphene on SiC (0001): a review of growth, characterization, transfer do** and hydrogen intercalation. J. Phys. D Appl. Phys. 43(37), 374009 (2010)

    Article  Google Scholar 

  • Roscher, S., Hoffmann, R., Prescher, M., Knittel, P., Ambacher, O.: High voltage electrochemical exfoliation of graphite for high-yield graphene production. RSC Adv. 9, 29305–29311 (2019)

    Article  Google Scholar 

  • Ruiz-Hitzky, E., Darder, M., Fernandes, F.M., Zatile, E., Palomares, F.J., Aranda, P.: Supported graphene from natural resources: easy preparation and applications. Adv. Mater. 23, 5250–5255 (2011)

    Article  Google Scholar 

  • Safavi, A., Tohidi, M., Mahyari, F.A., Shahbaazi, H.: One-pot synthesis of large scale graphene nanosheets from graphite-liquid crystal composite via thermal treatment. J. Mater. Chem. 22, 3825–3831 (2012)

    Article  Google Scholar 

  • Shams, S.S., Sheng, L., Hu, R., Zhang, R., Zhu, J.: Synthesis of graphene from biomass: a green chemistry approach. Mater. Lett. 161, 476–479 (2015)

    Article  Google Scholar 

  • Singh, P., Bahadur, J., Pal, K.: One-step one chemical synthesis process of graphene from rice husk for energy storage applications. Graphene 6, 61–71 (2017)

    Article  Google Scholar 

  • Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48(8), 2127–2150 (2010)

    Article  Google Scholar 

  • Stankovich, S., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342–3347 (2006)

    Article  Google Scholar 

  • Staudenmaier, L.: Verfahren zur Darstellung der Graphitsaure. Eur. J. Inorg. Chem. 31(2), 1481–1487 (1898)

    Google Scholar 

  • Su, C.Y., Lu, A.Y., Xu, Y., Chen, F.R., Khobystov, A.N., Li, L.J.: High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3), 2332–2339 (2011)

    Article  Google Scholar 

  • Subrahmanyam, K., Panchakarla, L., Govindaraj, A., Rao, C.: Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009)

    Article  Google Scholar 

  • Sun, Z., Fang, S., Hu, Y.H.: 3D graphene materials: from understanding to design and synthesis control. Chem. Rev. 120(18), 10336–10453 (2020)

    Article  Google Scholar 

  • Tan, H., Wang, D., Guo, Y.: A strategy to synthesize multilayer graphene in arc-discharge plasma in a semi-opened environment. Materials (Basel) 12(14), 2279 (2019)

    Article  Google Scholar 

  • Tian, S., Yang, Y., Liu, Z., Wang, C., Pan, R., Gu, C., Li, J.: Temperature-dependent Raman investigation on suspended graphene: contribution from thermal expansion coefficient mismatch between graphene and substrate. Carbon 104, 27–32 (2016)

    Article  Google Scholar 

  • Tung, V.C., Allen, M.J., Yang, Y., Kaner, R.B.: High-throughput solution processing of large-scale graphene. Nat. Nano Technol. 4, 25–29 (2009)

    Article  Google Scholar 

  • Vallés, C., Drummond, C., Saadaoui, H., Furtado, C.A., He, M., Roubeau, O., Ortolani, L., Monthioux, M., Penicaud, A.: Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130(47), 15802–15804 (2008)

    Article  Google Scholar 

  • Viculis, L.M., Mack, J.J., Mayer, O.M., Hahn, H.T., Kaner, R.B.: Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 15(9), 974–978 (2005)

    Article  Google Scholar 

  • Wang, X., Fulvio, P.F., Baker, G.A., Veith, G.M., Unocic, R.R., Mahurin, S.M., Chi, M., Dai, S.: Direct exfoliation of natural graphite into micrometer size few layers of graphene sheets using ionic liquids. Chem. Commun. 46, 4487–4489 (2010)

    Article  Google Scholar 

  • Wang, J., **, X., Li, C., Wanga, W., Wu, H., Guo, S.: Graphene and graphene derivatives toughening polymers: toward high toughness and strength. Chem. Eng. J. 370, 831–854 (2019)

    Article  Google Scholar 

  • Wei, M.P., Chai, H., Cao, Y.L., Jia, D.Z.: Sulfonated graphene oxide as an adsorbent for removal of Pb2+ and methylene blue. J. Colloid Interface Sci. 524, 297–305 (2018)

    Article  Google Scholar 

  • Wu, Z.S., Ren, W.C., Gao, L.B., Zhao, J.P., Chen, Z.P., Liu, B.L., Tang, D.M., Yu, B., Jiang, C.B., Cheng, H.M.: Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3, 411–417 (2009)

    Article  Google Scholar 

  • **a, Z., Bellani, V., Sun, J., Palermo, V.: Electrochemical exfoliation of graphite in H2SO4, Li2SO4 and NaClO4 solutions monitored in situ by Raman microscopy and spectroscopy. Faraday Discuss. 227, 291–305 (2021)

    Article  Google Scholar 

  • Xu, Y.X., Bai, H., Lu, G.W., Li, C., Shi, G.Q.: Flexible Graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130, 5856–5857 (2008)

    Article  Google Scholar 

  • Yan, Y., Nashath, F.Z., Chen, S., Manickam, S., Lim, S.S., Zhao, H., Lester, E., Wu, T., Pang, C.H.: Synthesis of graphene: Potential carbon precursors and approaches. Nanotechnol. Rev. 9, 1284–1314 (2020)

    Google Scholar 

  • Yang, W., Chen, G., Shi, Z., Liu, C.C., Zhang, L., **e, G., Cheng, M., Wang, M., Wang, D., Yang, R., Shi, D., Watanabe, K., Taniguchi, T., Yao, Y., Zhang, Y., Zhang, G.: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013)

    Article  Google Scholar 

  • Yang, S., Lohe, M.R., Müllen, K., Feng, X.: New-generation graphene from electrochemical approaches: production and applications. Adv. Mater. 28, 6213–6221 (2016)

    Article  Google Scholar 

  • Yang, Z., Tian, J., Yin, Z., Cui, C., Qian, W., Wei, F.: Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141, 467–480 (2019)

    Article  Google Scholar 

  • Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22), 11700–11715 (2015)

    Article  Google Scholar 

  • Yu, H., Zhang, B., Bulin, C., Li, R., **ng, R.: High-efficient synthesis of graphene oxide based on improved Hummers method. Sci. Rep. 6, 36143 (2016)

    Article  Google Scholar 

  • Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W., Voon, C.H.: Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017)

    Article  Google Scholar 

  • Zhong, Y.L., Tian, Z., Simon, G.P., Li, D.: Scalable production of graphene via wet chemistry: progress and challenges. Mater. Today 18(2), 73–78 (2015)

    Article  Google Scholar 

  • Zhu, Z., Xu, Z.: The rational design of biomass-derived carbon materials towards next-generation energy storage: a review. Renew. Sustain. Energy Rev. 134, 110308 (2020)

    Article  Google Scholar 

  • Zhu, C., Guo, S., Fang, Y., Dong, S.: Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4, 2429–2437 (2010a)

    Article  Google Scholar 

  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010b)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Innovation (DSI) and National Research Foundation (NRF), South Africa through the DSI/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology (UID 62620), DSI/Mintek Nanotechnology Innovation Centre, and Rhodes University, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melkamu Biyana Regasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Regasa, M.B., Nyokong, T. (2024). Advantages of Electrochemical Exfoliation Method Over Conventional Methods. In: Khan, R., Kumar, N., Sadique, M.A., Parihar, A. (eds) Electrochemical Exfoliation of Graphene and Its Derivatives. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-2128-3_2

Download citation

Publish with us

Policies and ethics

Navigation