Electrochemical Exfoliation of Graphene and Its Derivatives and Its Extended Applications in Therapeutics

  • Chapter
  • First Online:
Electrochemical Exfoliation of Graphene and Its Derivatives

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 37 Accesses

Abstract

Graphene possesses numerous exceptional and promising physical, chemical, and mechanical characteristics, making it a compelling candidate for a wide array of therapeutic applications. These applications span from basic drug or gene delivery systems to a diverse platform of multiple therapeutic modalities, comprising tissue engineering and cancer therapies. Graphene is a valuable scaffold in tissue engineering and has potential in photomedicine for wound healing and cancer therapy due to its photosensitizing properties. Graphene and its derivatives are currently being tested as carriers of therapeutic agents for cells or tissues, both in vivo and in vitro. These nanocarriers can have therapeutic effects which are influenced by various microenvironments. These include elevated glutathione and acidic pH as endogenous stimuli, and ultrasonic or light signals as exogenous stimuli. Graphene-based materials have paved the way for drug delivery and tumour treatment therapies due to their unique features and responsiveness. This chapter highlights the properties and unique structure of graphene that make it ideal for therapeutics. It also embodies a better and clearer understanding of therapeutic covering drug delivery, tissue engineering, gene delivery, several cancer therapies photodynamic therapy (PDT), radiotherapy (RT), photothermal therapy (PTT), etc. In this emerging field, we have discussed the significant challenges that need to be addressed, and we have also talked about the future prospects that it holds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 119.83
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah Al, N., Lee, J.E., Jeong, J.H., Park, S.Y.: Photoresponsive fluorescent reduced graphene oxide by spiropyran conjugated hyaluronic acid for in vivo imaging and target delivery. Biomacromolecules 14, 4082–4090 (2013)

    Google Scholar 

  • An, J., Gou, Y., Yang, C., Hu, F., Wang, C.: Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. Mater. Sci. Eng.: C 33, 2827–2837 (2013)

    Google Scholar 

  • Ahadian, S., Ramón-Azcón, J., Chang, H., Liang, X., Kaji, H., Shiku, H., Nakajima, K., Ramalingam, M., Wu, H., Matsue, T., Khademhosseini, A.: Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC Adv. 4(19), 9534–9541 (2014)

    Google Scholar 

  • Ali‐Boucetta, H., Bitounis, D., Raveendran‐Nair, R., Servant, A., Van den Bossche, J., Kostarelos, K.: Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv. Healthc. Mater. 2(3), 433–441 (2013)

    Google Scholar 

  • Bina, L., Romano, V., Hoogland, T.M., Bosman, L.W., De Zeeuw, C.I.: Purkinje cells translate subjective salience into readiness to act and choice performance. Cell Rep. 37(11) (2021)

    Google Scholar 

  • Bressan, E., Ferroni, L., Gardin, C., Sbricoli, L., Gobbato, L., Ludovichetti, F.S., Tocco, I., Carraro, A., Piattelli, A., Zavan, B.: Graphene based scaffolds effects on stem cells commitment. J. Transl. Med. 12, 1–15 (2014)

    Google Scholar 

  • Chen, B., Liu, M., Zhang, L., Huang, J., Yao, J., Zhang, Z.: Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J. Mater. Chem. 21(21), 7736–7741 (2011)

    Google Scholar 

  • Chen, T., Yu, H., Yang, N., Wang, M., Ding, C., Fu, J.: Graphene quantum dot-capped mesoporous silica nanoparticles through an acid-cleavable acetal bond for intracellular drug delivery and imaging. J. Mater. Chem. B 2, 4979–4982 (2014)

    Google Scholar 

  • Chen, Y.W., Liu, T.Y., Chang, P.H., Hsu, P.H., Liu, H.L., Lin, H.C., Chen, S.Y.: A theragnostic nrGO@ MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale 8, 12648–12657 (2016)

    Article  Google Scholar 

  • Dai, C., Zhang, S., Liu, Z., Wu, R., Chen, Y.: Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano 11, 9467–9480 (2017)

    Article  Google Scholar 

  • Dembereldorj, U., Kim, M., Kim, S., Ganbold, E.O., Lee, S.Y., Joo, S.W.: A spatiotemporal anticancer drug release platform of PEGylated graphene oxide triggered by glutathione in vitro and in vivo. J. Mater. Chem. 22, 23845–23851 (2012)

    Article  Google Scholar 

  • Deng, L., Li, Q., Al-Rehili, S.A., Omar, H., Almalik, A., Alshamsan, A., Khashab, N.M.: Hybrid iron oxide–graphene oxide–polysaccharides microcapsule: a micro-matryoshka for on-demand drug release and antitumor therapy in vivo. ACS Appl. Mater. Interfaces 8, 6859–6868 (2016)

    Article  Google Scholar 

  • Depan, D., Shah, J., Misra, R.D.K.: Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mater. Sci. Eng. C 31, 1305–1312 (2011)

    Article  Google Scholar 

  • Dvir, T., Timko, B.P., Brigham, M.D., Naik, S.R., Karajanagi, S.S., Levy, O., **, H., Parker, K.K., Langer, R., Kohane, D.S.: Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 6(11), 720–725 (2011)

    Google Scholar 

  • Fan, X., Jiao, G., Gao, L., **, P., Li, X.: The preparation and drug delivery of a graphene–carbon nanotube–Fe3O4 nanoparticle hybrid. J. Mater. Chem. B 1, 2658–2664 (2013)

    Google Scholar 

  • Feng, X., Chen, L., Guo, W., Zhang, Y., Lai, X., Shao, L., Li, Y.: Graphene oxide induces p62/SQSTM-dependent apoptosis through the impairment of autophagic flux and lysosomal dysfunction in PC12 cells. Acta Biomater.biomater 81, 278–292 (2018)

    Article  Google Scholar 

  • Feng, L., Zhang, Z., Ren, J., Qu, X.: Functionalized graphene as sensitive electrochemical label in target-dependent linkage of split aptasensor for dual detection. Biosens. Bioelectron. 62, 52–58 (2014)

    Google Scholar 

  • Freed, L.E., Vunjak-Novakovic, G., Biron, R.J., Eagles, D.B., Lesnoy, D.C., Barlow, S.K., Langer, R.: Biodegradable polymer scaffolds for tissue engineering. Bio/technology 12(7), 689–693 (1994)

    Google Scholar 

  • Gu, Z., Zhu, S., Yan, L., Zhao, F., Zhao, Y.: Graphene-based smart platforms for combined cancer therapy. Adv. Mater. 31, 1800662 (2019)

    Article  Google Scholar 

  • Hao, L., Song, H., Zhan, Z., Lv, Y.: Multifunctional reduced graphene oxide-based nanoplatform for synergistic targeted chemo-photothermal therapy. ACS Appl. Bio Mater. 3(8), 5213–5222 (2020)

    Google Scholar 

  • Huang, P., Xu, C., Lin, J., Wang, C., Wang, X., Zhang, C., Cui, D.: Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 1, 240 (2011)

    Article  Google Scholar 

  • Jiang, W., Yin, L., Chen, H., Paschall, A.V., Zhang, L., Fu, W., **e, J.: NaCl nanoparticles as a cancer therapeutic. Adv. Mater. 31, 1904058 (2019)

    Article  Google Scholar 

  • Kim, H., Lee, D., Kim, J., Kim, T.I., Kim, W.J.: Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano 7, 6735–6746 (2013)

    Article  Google Scholar 

  • Kumar, N., Yadav, S., Sadique, M.A., Khan, R.: Electrochemically exfoliated graphene quantum dots based biosensor for CD44 breast cancer biomarker. Biosensors 12(11), 966 (2022)

    Article  Google Scholar 

  • Kumar, N., Sadique, M.A., Khan, R., Gowri, V.S., Kumar, S., Ashiq, M., Natarajan, S.: Immunosensor for breast cancer CD44 biomarker detection based on exfoliated graphene quantum dots integrated gold nanoparticles. Hybrid Adv. 3, 100065 (2023)

    Article  Google Scholar 

  • Liang, X., Chen, L., Nguyen, D., Zhou, Z., Gu, X., Yang, M., Wang, J., Jiang, S.: Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Phys. Med. Biol. 64(12), 125002 (2019)

    Google Scholar 

  • Lima-Sousa, R., de Melo-Diogo, D., Alves, C.G., Cabral, C.S., Miguel, S.P., Mendonça, A.G., Correia, I.J.: Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. Mater. Sci. Eng.: C 117, 111294 (2020)

    Google Scholar 

  • Lin, H., Chen, Y., Shi, J.: Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 47, 1938–1958 (2018)

    Article  Google Scholar 

  • Liu, Z., Robinson, J.T., Sun, X., Dai, H.: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–10877 (2008)

    Article  Google Scholar 

  • Liu, K., Zhang, J.J., Cheng, F.F., Zheng, T.T., Wang, C., Zhu, J.J.: Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J. Mater. Chem. 21, 12034–12040 (2011)

    Article  Google Scholar 

  • Lv, C., Kang, W., Liu, S., Yang, P., Nishina, Y., Ge, S., Bianco, A., Ma, B.: Growth of ZIF-8 nanoparticles in situ on graphene oxide nanosheets: a multifunctional nanoplatform for combined ion-interference and photothermal therapy. ACS Nano 16(7), 11428–11443 (2022)

    Google Scholar 

  • Ma, C.S., Deenick, E.K., Batten, M., Tangye, S.G.: The origins, function, and regulation of T follicular helper cells. J. Exp. Med. 209(7), 1241–1253 (2012)

    Google Scholar 

  • Manna, A.K., Pati, S.K.: Theoretical understanding of single-stranded DNA assisted dispersion of graphene. J. Mater. Chem. B 1(1), 91–100 (2013)

    Google Scholar 

  • Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  Google Scholar 

  • Mangalath, S., Saneesh Babu, P.S., Nair, R.R., Manu, P.M., Krishna, S., Nair, S.A., Joseph, J.: Graphene quantum dots decorated with boron dipyrromethene dye derivatives for photodynamic therapy. ACS Appl. Nano Mater. 4(4), 4162–4171 (2021)

    Google Scholar 

  • Moore, T.L., Podilakrishna, R., Rao, A., Alexis, F.: Systemic administration of polymer‐coated nano‐graphene to deliver drugs to glioblastoma. Part. Part. Syst. Charact. 31, 886–894 (2014)

    Google Scholar 

  • Naujoks, C., Langenbach, F., Berr, K., Depprich, R., Kübler, N., Meyer, U., Handschel, J., Kögler, G.: Biocompatibility of osteogenic predifferentiated human cord blood stem cells with biomaterials and the influence of the biomaterial on the process of differentiation. J. Biomater. Appl. 25(5), 497–512 (2011)

    Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Google Scholar 

  • Nurunnabi, M., Parvez, K., Nafiujjaman, M., Revuri, V., Khan, H. A., Feng, X., Lee, Y.K.: Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv. 5, 42141–42161 (2015)

    Google Scholar 

  • Pan, Y., Bao, H., Sahoo, N.G., Wu, T., Li, L.: Water soluble poly (N isopropylacrylamide)–graphene sheets synthesized via click chemistry for drug delivery. Adv. Funct. Mater.funct. Mater. 21, 2754–2763 (2011)

    Article  Google Scholar 

  • Park, J., Kim, B., Han, J., Oh, J., Park, S., Ryu, S., Jung, S., Shin, J.Y., Lee, B.S., Hong, B.H., Choi, D.: Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano 9(5), 4987–4999 (2015)

    Google Scholar 

  • Paul, A., Hasan, A., Kindi, H.A.: Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for. ACS Nano 8(8) (2014)

    Google Scholar 

  • Pei, S., Cheng, H.M.: The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)

    Article  Google Scholar 

  • Rahman, M., Zaki Ahmad, M., Ahmad, J., Firdous, J., Jalees Ahmad, F., Mushtaq, G., Akhter, S.: Role of graphene nano-composites in cancer therapy: theranostic applications, metabolic fate and toxicity issues. Curr. Drug Metab.metab. 16, 397–409 (2015)

    Article  Google Scholar 

  • Rana, V.K., Choi, M.C., Kong, J.Y., Kim, G.Y., Kim, M.J., Kim, S.H., Ha, C.S.: Synthesis and drug delivery behavior of chitosan functionalized graphene oxide hybrid nanosheets. Macromol. Mater. Eng. Mater. Eng. 296, 131–140 (2011)

    Article  Google Scholar 

  • Reina, G., González-Domínguez, J.M., Criado, A., Vázquez, E., Bianco, A., Prato, M.: Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev. 46, 4400–4416 (2017)

    Article  Google Scholar 

  • Ren, T., Li, L., Cai, X., Dong, H., Liu, S., Li, Y.: Engineered polyethylenimine/graphene oxide nanocomposite for nuclear localized gene delivery. Polym. Chem. 3(9), 2561–2569 (2012)

    Google Scholar 

  • Ryoo, S.R., Kim, Y.K., Kim, M.H., Min, D.H.: Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4(11), 6587–6598 (2010)

    Google Scholar 

  • Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S.: Graphene based materials: past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011)

    Article  Google Scholar 

  • Song, J., Yang, X., Jacobson, O., Lin, L., Huang, P., Niu, G., Ma, Q., Chen, X.: Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 22; 9(9), 9199–209 (2015)

    Google Scholar 

  • Soleimany, A., Khoee, S., Dias, S., Sarmento, B.: Exploring low-power single-pulsed laser-triggered two-photon photodynamic/photothermal combination therapy using a gold nanostar/graphene quantum dot nanohybrid. ACS Appl. Mater. Interfaces 15(17), 20811–20821 (2023)

    Google Scholar 

  • Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., Dai, H.: Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203–212 (2008)

    Article  Google Scholar 

  • Syama, S., Mohanan, P.V.: Comprehensive application of graphene: emphasis on biomedical concerns. Nano-micro Letters 11, 1–31 (2019)

    Google Scholar 

  • Thompson, R.F., Maity, A.: Radiotherapy and the tumor microenvironment: mutual influence and clinical implications. In: Tumor Microenvironment and Cellular Stress: Signaling, Metabolism, Imaging, and Therapeutic Targets, pp. 147–165 (2014)

    Google Scholar 

  • Tian, B., Wang, C., Zhang, S., Feng, L., Liu, Z.: Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5, 7000–7009 (2011)

    Article  Google Scholar 

  • Tonelli, F.M., Goulart, V.A., Gomes, K.N., Ladeira, M.S., Santos, A.K., Lorençon, E., Resende, R.R.: Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine 10, 2423–2450 (2015)

    Article  Google Scholar 

  • Wang, X., Sun, X., Lao, J., He, H., Cheng, T., Wang, M., Huang, F.: Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf. B: Biointerfaces 122: 638–644 (2014)

    Google Scholar 

  • Wang, Y., Wang, K., Zhao, J., Liu, X., Bu, J., Yan, X., Huang, R.: Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J. Am. Chem. Soc. 135, 4799–4804 (2013)

    Article  Google Scholar 

  • Wojtoniszak, M., Urbas, K., Perużyńska, M., Kurzawski, M., Droździk, M., Mijowska, E.: Covalent conjugation of graphene oxide with methotrexate and its antitumor activity. Chem. Phys. Lett. 568, 151–156 (2013)

    Article  Google Scholar 

  • Xu, Z., Wang, S., Li, Y., Wang, M., Shi, P., Huang, X.: Covalent functionalization of graphene oxide with biocompatible poly (ethylene glycol) for delivery of paclitaxel. ACS Appl. Mater. Interfaces 6, 17268–17276 (2014)

    Article  Google Scholar 

  • Yang, X., Zhang, X., Liu, Z., Ma, Y., Huang, Y., Chen, Y.: High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C 112, 17554–17558 (2008)

    Article  Google Scholar 

  • Yang, X., Zhang, X., Ma, Y., Huang, Y., Wang, Y., Chen, Y.: Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19, 2710–2714 (2009)

    Article  Google Scholar 

  • Yang, X., Wang, Y., Huang, X., Ma, Y., Huang, Y., Yang, R., Chen, Y.: Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J. Mater. Chem. 21, 3448–3454 (2011)

    Article  Google Scholar 

  • Yang, Y., Zhang, Y.M., Chen, Y., Zhao, D., Chen, J.T., Liu, Y.: Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chem. Eur. J. 18, 4208–4215 (2012)

    Article  Google Scholar 

  • Yi, X., Chen, L., Zhong, X., Gao, R., Qian, Y., Wu, F., Yang, K.: Core–shell Au@ MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. Nano Res. 9, 3267–3278 (2016)

    Article  Google Scholar 

  • Yin, D., Li, Y., Lin, H., Guo, B., Du, Y., Li, X., Zhang, L.: Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. Nanotechnology 24, 105102 (2013)

    Google Scholar 

  • Zhang, L., Ren, X., Alt, E., Bai, X., Huang, S., Xu, Z., Wu, X.: Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis. Nature 464, 1058–1061 (2010)

    Google Scholar 

  • Zhang, M., Song, R., Liu, Y., Yi, Z., Meng, X., Zhang, J., Bu, W.: Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles. Chem 5, 2171–2182 (2019)

    Article  Google Scholar 

  • Zhang, M., Zhang, X., Zhao, K., Dong, Y., Yang, W., Liu, J., Li, D.: Assembly of gold nanorods with L-cysteine reduced graphene oxide for highly efficient NIR-triggered photothermal therapy. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 266, 120458 (2022)

    Google Scholar 

  • Zhao, Y.Z., Lin, M.T., Lan, Q.H., Zhai, Y.Y., Xu, H.L., **ao, J., Yao, Q.: Silk fibroin-modified disulfiram/zinc oxide nanocomposites for pH triggered release of Zn2+ and synergistic antitumor efficacy. Mol Pharmaceutics 17, 3857–3869 (2020)

    Article  Google Scholar 

  • Zhi, F., Dong, H., Jia, X., Guo, W., Lu, H., Yang, Y., Ju, H., Zhang, X., Hu, Y.: Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in vitro. PLoS One 8(3), e60034 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paul, S.J., Chandra, P., Kumar, N., Khan, R. (2024). Electrochemical Exfoliation of Graphene and Its Derivatives and Its Extended Applications in Therapeutics. In: Khan, R., Kumar, N., Sadique, M.A., Parihar, A. (eds) Electrochemical Exfoliation of Graphene and Its Derivatives. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-2128-3_10

Download citation

Publish with us

Policies and ethics

Navigation