Composite Materials for Bio-Energy

  • Chapter
  • First Online:
Hybrid Composite Materials

Abstract

In the present scenario of energy scarcity around the world and current geopolitical tensions have pushed the scientific community for green and renewable energy sources. Hunt for sustainability has tossed Bio-electrochemical systems for the bioenergy. These systems have wide applications ranging from wastewater treatment to bio-energy production. The present chapter explores the advancements in field of polymeric composites, their roles for various bioenergy applications. These polymeric materials are explored in the Bio-electrochemical systems as electrode materials for attachment of the biofilm over them, electron transportation for different end products at cathode. Also, these polymeric composites play a crucial role as proton exchange membranes and also anti-fouling agent for these membranes. This chapter also discusses Polymeric composites-based BES for wastewater treatment, waste management, contaminants removal, waste to energy etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Bakonyi, G. Kumar, L. Koók et al., Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: a review on process characteristics, experiences and lessons. Bioresour. Technol. 251, 381–389 (2018). https://doi.org/10.1016/j.biortech.2017.12.064

    Article  CAS  PubMed  Google Scholar 

  2. J.K. Nayak, G.U.K. Amit, An innovative mixotrophic approach of distillery spent wash with sewage wastewater for biodegradation and bioelectricity generation using microbial fuel cell. J. Water Proc. Eng. 23 (2018). https://doi.org/10.1016/j.jwpe.2018.04.003

  3. H. Wang, Z.J. Ren, A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv. 31, 1796–1807 (2013). https://doi.org/10.1016/j.biotechadv.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  4. M. Shabani, H. Younesi, M. Pontié, et al., A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery. J. Clean. Prod. 264 (2020). https://doi.org/10.1016/j.jclepro.2020.121446

  5. R.M.M. Ziara, B.I. Dvorak, J. Subbiah, Sustainable Waste-to-Energy Technologies: Bioelectrochemical Systems. (Elsevier Inc., 2018)

    Google Scholar 

  6. Y. Luo, R. Zhang, G. Liu et al., Electricity generation from indole and microbial community analysis in the microbial fuel cell. J. Hazard. Mater. 176, 759–764 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.100

    Article  CAS  PubMed  Google Scholar 

  7. H. Wang, H. Luo, P.H. Fallgren et al., Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol. Adv. 33, 317–334 (2015). https://doi.org/10.1016/j.biotechadv.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  8. Y.V. Nancharaiah, S. Venkata Mohan, P.N.L. Lens, Metals removal and recovery in bioelectrochemical systems: a review. Bioresour. Technol. 195, 102–114 (2015). https://doi.org/10.1016/j.biortech.2015.06.058

    Article  CAS  PubMed  Google Scholar 

  9. D. Pant, G. Van Bogaert, C. Porto-Carrero et al., Anode and cathode materials characterization for a microbial fuel cell in half cell configuration. Water Sci. Technol. 63, 2457–2461 (2011). https://doi.org/10.2166/wst.2011.217

    Article  CAS  PubMed  Google Scholar 

  10. S. Bajracharya, R. Yuliasni, K. Vanbroekhoven et al., Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis. Bioelectrochemistry 113, 26–34 (2017). https://doi.org/10.1016/j.bioelechem.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  11. L.L. Wan, X.J. Li, G.L. Zang et al., A solar assisted microbial electrolysis cell for hydrogen production driven by a microbial fuel cell. RSC Adv. 5, 82276–82281 (2015). https://doi.org/10.1039/c5ra16919d

    Article  CAS  Google Scholar 

  12. R. Gautam, J.K. Nayak, N.V. Ress et al., Bio-hydrogen production through microbial electrolysis cell: structural components and influencing factors. Chem. Eng. J. 455, 140535 (2023). https://doi.org/10.1016/j.cej.2022.140535

    Article  CAS  Google Scholar 

  13. F. Bucatariu, M. Mihai, Polymer/enzyme composite materials

    Google Scholar 

  14. T.K. Das, M. Jesionek, Y. Çelik, A. Poater, Catalytic polymer nanocomposites for environmental remediation of wastewater. Sci. Total. Environ. 901, 165772 (2023). https://doi.org/10.1016/j.scitotenv.2023.165772

    Article  CAS  PubMed  Google Scholar 

  15. L.M. Petrila, V.R. Grădinaru, F. Bucatariu, M. Mihai, Polymer/enzyme composite materials—versatile catalysts with multiple applications. Chem 4, 1312–1338 (2022). https://doi.org/10.3390/chemistry4040087

    Article  CAS  Google Scholar 

  16. R. Gautam, N.V. Ress, R.S. Wilckens, U.K. Ghosh, Hydrogen production in microbial electrolysis cell and reactor digestate valorization for biochar—a noble attempt towards circular economy. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/J.IJHYDENE.2023.07.190

    Article  Google Scholar 

  17. J.K. Nayak, R. Gautam, U.K. Ghosh, Bioremediation potential of bacterial consortium on different wastewaters for electricity and biomass feedstock generation. Biomass Convers Biorefinery (2022). https://doi.org/10.1007/S13399-022-02992-2

    Article  Google Scholar 

  18. R. Gautam, J.K. Nayak, K.N. Talapatra et al., Assessment of different organic substrates for bio-electricity and bio-hydrogen generation in an integrated bio-electrochemical system. Mater. Today Proc. 80, 2255–2259 (2023). https://doi.org/10.1016/J.MATPR.2021.06.223

    Article  CAS  Google Scholar 

  19. M. Yellappa, J.S. Sravan, O. Sarkar et al., Modified conductive polyaniline-carbon nanotube composite electrodes for bioelectricity generation and waste remediation. Bioresour. Technol. 284, 148–154 (2019). https://doi.org/10.1016/j.biortech.2019.03.085

    Article  CAS  PubMed  Google Scholar 

  20. Q. Wu, H. **ao, H. Zhu et al., Carbon felt composite electrode plates promote methanogenesis through microbial electrolytic cells. Energies 16, 1–14 (2023). https://doi.org/10.3390/en16114416

    Article  CAS  Google Scholar 

  21. S.K.S. Hossain, M.E. Hoque, Polymer Nanocomposite Materials in Energy Storage: Properties and Applications. (Elsevier Ltd., 2018)

    Google Scholar 

  22. B.C. Riggs, S. Adireddy, C.H. Rehm et al., Polymer nanocomposites for energy storage applications. Mater.Today Proc. 2, 3853–3863 (2015). https://doi.org/10.1016/j.matpr.2015.08.004

    Article  Google Scholar 

  23. J. Gopal, M. Muthu, I. Sivanesan, A comprehensive compilation of graphene/fullerene polymer nanocomposites for electrochemical energy storage. Polymers (Basel) 15 (2023). https://doi.org/10.3390/polym15030701

  24. E. Senokos, Y. Ou, J.J. Torres et al., Energy storage in structural composites by introducing CNT fiber/polymer electrolyte interleaves. Sci. Rep. 8, 1–10 (2018). https://doi.org/10.1038/s41598-018-21829-5

    Article  CAS  Google Scholar 

  25. J.K. Nayak, U.K. Ghosh, Microalgae cultivation for pretreatment of pharmaceutical wastewater associated with microbial fuel cell and biomass feed stock production. Adv. Sci. Technol. Innov. 383–387 (2020). https://doi.org/10.1007/978-3-030-13068-8_96

  26. M.R. Berber, Current advances of polymer composites for water treatment and desalination. J. Chem. (2020). https://doi.org/10.1155/2020/7608423

  27. S. Chandra Dubey, V. Mishra, A. Sharma, A review on polymer composite with waste material as reinforcement. Mater. Today Proc. 47, 2846–2851 (2021). https://doi.org/10.1016/j.matpr.2021.03.611

    Article  CAS  Google Scholar 

  28. L. Tamayo, H. Palza, J. Bejarano, P.A. Zapata, polymer composites with metal nanoparticles: synthesis, properties, and applications, in Synthesis, Properties, and Applications. (Elsevier Inc., 2018)

    Google Scholar 

  29. A. Girge, V. Goel, G. Gupta et al., Industrial waste filled polymer composites–a review. Mater Today Proc 47, 2852–2863 (2021). https://doi.org/10.1016/j.matpr.2021.03.617

    Article  CAS  Google Scholar 

  30. K. Formela, M. Kurańska, M. Barczewski, Recent advances in development of waste-based polymer materials: a review. Polymers (Basel) 14 (2022). https://doi.org/10.3390/polym14051050

  31. M.C. Goci, A. Leudjo Taka, L. Martin, M.J. Klink, Chitosan-based polymer nanocomposites for environmental remediation of mercury pollution. Polymers (Basel) 15 (2023). https://doi.org/10.3390/polym15030482

  32. S. Mallakpour, F. Sirous, C.M. Hussain, A journey to the world of fascinating ZnO nanocomposites made of chitosan, starch, cellulose, and other biopolymers: progress in recent achievements in eco-friendly food packaging, biomedical, and water remediation technologies. Int. J. Biol. Macromol. 170, 701–716 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.163

    Article  CAS  PubMed  Google Scholar 

  33. R. Gautam, J.K. Nayak, K.N. Talapatra, et al., Assessment of different organic substrates for bio-electricity and bio-hydrogen generation in an integrated bio-electrochemical system. Mater Today Proc 6–10 (2021). https://doi.org/10.1016/j.matpr.2021.06.223

  34. V. Yadav, A. Rajput, N.H. Rathod, V. Kulshrestha, Enhancement in proton conductivity and methanol cross-over resistance by sulfonated boron nitride composite sulfonated poly (ether ether ketone) proton exchange membrane. Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.06.091

    Article  Google Scholar 

  35. V. Yadav, V. Kulshrestha, Boron nitride: a promising material for proton exchange membranes for energy applications. Nanoscale 11, 12755–12773 (2019). https://doi.org/10.1039/c9nr03094h

    Article  CAS  PubMed  Google Scholar 

  36. S.G. Park, K.J. Chae, M. Lee, A sulfonated poly(arylene ether sulfone)/polyimide nanofiber composite proton exchange membrane for microbial electrolysis cell application under the coexistence of diverse competitive cations and protons. J. Memb. Sci. 540, 165–173 (2017). https://doi.org/10.1016/j.memsci.2017.06.048

    Article  CAS  Google Scholar 

  37. H. Liu, B.E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38, 4040–4046 (2004). https://doi.org/10.1021/es0499344

    Article  CAS  PubMed  Google Scholar 

  38. A.A.A. ElHakim, S. Awad, M.F. Radwan et al., Preparation and characterization of proton exchange membrane by UV photografting technique. J. Solid State Electrochem. 23, 2813–2824 (2019). https://doi.org/10.1007/s10008-019-04388-1

    Article  CAS  Google Scholar 

  39. H. Wang, G. Zhang, X. Li et al., Preparation and characterization of proton exchange membranes with through-membrane proton conducting channels. Ionics (Kiel) 23, 2359–2366 (2017). https://doi.org/10.1007/s11581-017-2078-x

    Article  CAS  Google Scholar 

  40. J. Walkowiak-Kulikowska, J. Wolska, H. Koroniak, Polymers application in proton exchange membranes for fuel cells (PEMFCs). Phys. Sci. Rev. 2, 1–34 (2017). https://doi.org/10.1515/psr-2017-0018

    Article  Google Scholar 

  41. Y. Zhang, J. Sun, Y. Hu et al., Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials. Int. J. Hydrogen Energy 37, 16935–16942 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.064

    Article  CAS  Google Scholar 

  42. C. Gong, X. Zheng, H. Liu et al., A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes. J. Power. Sources 325, 453–464 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.061

    Article  CAS  Google Scholar 

  43. C. Wang, S. Wang, L. Peng, et al., Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications. Energies 9 (2016). https://doi.org/10.3390/en9080603

  44. S. He, Y. Lin, H. Ma et al., Using ethanol/water mixed solvent. 169, 69–72 (2016)

    CAS  Google Scholar 

  45. L. Zhang, S.R. Chae, Z. Hendren et al., Recent advances in proton exchange membranes for fuel cell applications. Chem. Eng. J. 204–205, 87–97 (2012). https://doi.org/10.1016/j.cej.2012.07.103

    Article  CAS  Google Scholar 

  46. A. Kadier, M.S. Kalil, P. Abdeshahian et al., Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew. Sustain. Energy Rev. 61, 501–525 (2016). https://doi.org/10.1016/j.rser.2016.04.017

    Article  CAS  Google Scholar 

  47. J. Kumar Nayak, S. Mishra, Amit, et al., Simultaneous production of bio-energy and bio-treatment of wastewater using photosynthetic microbial fuel cell: optimization and kinetic modeling approach. 1, 3 (2023). https://doi.org/10.1007/s12649-022-01836-4

  48. P. Mishra, D. Johnravindar, J.W.C. Wong, J. Zhao, Metals and metallic composites as emerging nanocatalysts for fermentative hydrogen production. Sustain Energy Fuels 6, 5425–5438 (2022). https://doi.org/10.1039/d2se01165d

    Article  CAS  Google Scholar 

  49. H.S. Gupta, U. Shankar, A. Verma, R. Gogoi, S.K. Sethi, Computational aspects: self-clean coatings, plastics and polymers in coatings, in Coating Materials: Computational Aspects, Applications and Challenges (Singapore, Springer Nature Singapore, 2023). pp. 167–184

    Google Scholar 

  50. H.S. Gupta, S.K. Sethi, A. Verma, Applications of coating materials: a critical overview, in Coating Materials: Computational Aspects, Applications and Challenges (2023). pp. 81–109

    Google Scholar 

  51. H.S. Gupta, P. Kumar, A.K. Sethi, A. Verma, S.K. Sethi, Software-based simulations of the creep recovery model of polymer composites, in Dynamic Mechanical and Creep-Recovery Behavior of Polymer-Based Composites (Elsevier, 2024). pp. 271–289

    Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Gautam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, R., Gupta, H.S., Chauhan, A., Jaiswal, A.K., Verma, A. (2024). Composite Materials for Bio-Energy. In: Verma, A., Gupta, H.S., Sethi, S.K. (eds) Hybrid Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-2104-7_4

Download citation

Publish with us

Policies and ethics

Navigation