Entwurf und Analyse eines eindimensionalen photonischen Kristall-Biosensor-Geräts zur Identifizierung von Krebszellen

  • Chapter
  • First Online:
Intelligente Nano-Bio-Geräte der nächsten Generation

Zusammenfassung

Das vorliegende Kapitel hebt eindimensionale photonische Kristalle (1D-PhC) und ihre wesentlichen Anwendungen hervor. Der bemerkenswerte wissenschaftliche Fortschritt in PhC hat die Aufmerksamkeit von Forschern auf neuartige Biosensorik-Anwendungen lenken können. Mit dem Fortschritt in der Technologie wurden verschiedene defektbasierte PhC erfolgreich hergestellt, mit umfangreicher Analyse der Ausbreitungseigenschaften und getestet für verschiedene Sensoranwendungen wie Blut, Gas, Salzgehalt, DNA, Alkohol, Flüssigkeit, Lebensmittel, Hormone, Enzyme, Zellen, Urin, Glukose, Chemikalien etc. Die Transfermatrixmethode ist die geeignetste Methode zur Untersuchung der spektralen Eigenschaften der 1D-PhC-Struktur. Das Sensorikprinzip basiert auf der Untersuchung der Änderung in der Resonanzmoduswellenlänge entsprechend der Änderung im Brechungsindex des Analyten. Dieses Kapitel befasst sich mit der Untersuchung des auf einen Defekt basierten 1D-PhC-Krebszellensensors, bei dem TMM eingesetzt wird, um basale, zervikale und Brustkrebszellen zu erkennen. Um die Empfindlichkeit zu erhöhen, wird eine dünne Graphenschicht an der Seitenwand der Defektschicht abgelagert. Es wurde eine vollständige Optimierung der geometrischen Parameter vorgenommen, um eine hohe Leistung zu erzielen. Die 3D-Farbverlaufsdarstellung wird untersucht, um die Variation in den Eigenschaften des Defektmodus mit Änderung des Einfallswinkels deutlich zu zeigen. Darüber hinaus werden Signal-Rausch-Verhältnis, Q-Faktor, Auflösung und Güte des Sensors sorgfältig gemessen. Die bemerkenswerte Sensorleistung kann einen Weg eröffnen, um Krebszellen effektiv in einem frühen Stadium zu erkennen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Armstrong, E., Dwyer, C.O.: Artificial opal photonic crystals and inverse opal structures: fundamentals and applications from optics to energy storage. J. Mater. Chem. C 3(24), 6109–6143 (2015)

    Google Scholar 

  2. Cucci, C., Tornari, V.: Photonic technologies for the safeguarding of cultural assets. In: Photonics for Safety and Security, S. 21–45. World Scientific Press, Singapore (2014)

    Google Scholar 

  3. Shen, H., et al.: One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction. RSC Adv. 6, 4505 (2016)

    Google Scholar 

  4. Yablonovitch, E.: Inhibited spontaneous emission in solid–state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Google Scholar 

  5. John, S.: Strong localization of photons in certain in disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Google Scholar 

  6. Ishizaki, K., Suzuki, K., Noda, S.: Fabrication of 3D photonic crystals toward arbitrary manipulation of photons in three dimensions. Photonics 3(2), 36 (2016)

    Google Scholar 

  7. Panda, A., Pukhrambam, P.D.: Design and analysis of porous core photonic crystal fiber based ethylene glycol sensor operated at infrared wavelengths. J. Comput. Electron. 20, 943–957 (2021)

    Google Scholar 

  8. Pang, L., Nakagawa, W., Fainman, Y.: Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write. Appl. Opt. 42(27), 5450–5456 (2003)

    Google Scholar 

  9. Panda, A., Pukhrambam, P.D.: Photonic crystal biosensor for refractive index based cancerous cell detection. Opt. Fiber Technol. 54, 102123 (2020)

    Google Scholar 

  10. Panda, A., Pukhrambam, P.D.: Analysis of GaN-based 2D photonic crystal sensor for real-time detection of alcohols. Braz. J. Phys. 51, 481–492 (2021)

    Google Scholar 

  11. Baba, T., Mori, D., Inoshita, K., Kuroki, Y.: Light localizations in photonic crystal line defect waveguides. IEEE J. Sel. Top. Quant. Electron. 10(3), 484–491 (2004)

    Google Scholar 

  12. Wellenzohn, M., et al.: Design of a photonic crystal defect waveguide biosensor operating in aqueous solutions at 1.34 µm, Proceedings 2, 1026 (2018)

    Google Scholar 

  13. Moghaddam, M.K., Fleury, R.: Slow light engineering in resonant photonic crystal line-defect waveguides. Opt. Expr. 27(18), 26229–26238 (2019)

    Google Scholar 

  14. Panda, A., Pukhrambam, P.D.: A theoretical proposal of high performance blood components biosensor based on defective 1D photonic crystal employing WS2, MoS2 and graphene. Opt. Quant. Electron. 53(357) (2021)

    Google Scholar 

  15. Panda, A., Pukhrambam, P.D., Keiser, G.: Realization of sucrose sensor using 1D photonic crystal structure vis-à-vis band gap analysis. Microsyst. Technol. 27, 833–842 (2021)

    Google Scholar 

  16. Panda, A., et al.: Research on SAD-PRD losses in semiconductor waveguide for application in photonic integrated circuits. Optik 154, 748–754 (2018)

    Google Scholar 

  17. Panda, A., Pukhrambam, P.D.: Investigation of defect based 1D photonic crystal structure for real-time detection of waterborne bacteria. Phys. B Condens. Matter. 607(3), 412854 (2021)

    Google Scholar 

  18. Aly, A.H., et al.: Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys. Scr. 95(3), 035510 (2020)

    Google Scholar 

  19. Goyal, A., Suthar, B., Bhargava, A.: Biosensor application of one-dimensional photonic crystal for malaria diagnosis. Plasmonics 16, 59–63 (2021)

    Google Scholar 

  20. Sharma, S., Kumar, A.: Design of a biosensor for the detection of dengue virus using 1D photonic crystals. Plasmonics (2021). https://doi.org/10.1007/s11468-021-01555-x

  21. Abadla, M.M., Elsayed, H.A.: Detection and sensing of hemoglobin using one-dimensional binary photonic crystals comprising a defect layer. Appl. Opt. 59(2), 418–424 (2020)

    Google Scholar 

  22. Algorri, J.F., et al.: Infiltrated photonic crystal fibers for sensing applications. Sensors 18(12), 4263 (2018)

    Google Scholar 

  23. Panda, A., Pukhrambam, P.D.: Design and analysis of 1D photonic crystal doped with magnetized cold plasma defect for application of single/multi-channel tunable narrowband filter. Phys. Scr. 97, 065507 (2022). https://doi.org/10.1088/1402-4896/ac6f92

  24. Aly, A.H., Mohamed, D., Mohaseb, M.A., Abd El-Gawaad, N.S., Trabelsi, Y.: Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal, RSC Adv. 10, 31765–31772 (2020)s

    Google Scholar 

  25. Panda, A., Vigneswaran, D., Pukhrambam, P.D., Ayyanar, N., Nguyen, T.K.: Design and performance analysis of reconfigurable 1D photonic crystal biosensor employing Ge2Sb2Te5 (GST) for detection of women reproductive hormones. IEEE Trans. NanoBiosci. 21(1), 21–28 (2022)

    Google Scholar 

  26. Panda, A., Pukhrambam, P.D., Wu, F., Belhadj, W.: Graphene-based 1D defective photonic crystal biosensor for real-time detection of cancer cells. Eur. Phys. J. Plus. 136, 809 (2021)

    Google Scholar 

  27. Falkovsky, L.A., Pershoguba S.S.: Optical far-infrared properties of a graphene mono layer and multilayer. Phys. Rev. B 76(15) (2007). Art. no. 153410

    Google Scholar 

  28. Mak, K.F., Shan, J., Heinz, T.F.: Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 104, 176404 (2010)

    Google Scholar 

  29. Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Google Scholar 

  30. Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Google Scholar 

  31. Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)

    Google Scholar 

  32. Stauber, T., Peres, N.M.R., Geim, A.K.: Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78(8) (2008). Art. no. 085432

    Google Scholar 

  33. Schedin, F., Geim, A., Morozov, S., Hill, E., Blake, P., Katsnelson, M., Novoselov, K.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007)

    Google Scholar 

  34. Pop, E., et al.: Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)

    Google Scholar 

  35. Rahman, M. R., et al.: Electrical and chemical properties of graphene over composite materials: a technical review. Mat. Sci. Res. India 16(2) (2019)

    Google Scholar 

  36. Liao, G., et al.: Preparation properties, and applications of graphene-based hydrogels. Front. Chem. 6, 450 (2018)

    Google Scholar 

  37. Nouman, W.M., Abd El-Ghany, S.E.S., Sallam, S.M., et al.: Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal. Opt. Quant. Electron. 52, 287 (2020)

    Google Scholar 

  38. Zaky, Z.A., Ahmed, A.M., Shalaby, A.S., Aly, A.H.: Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimization. Sci. Rep. 10, Art. no. 9736 (2020)

    Google Scholar 

  39. Shi, X., Zhao, Z.S., Han, Z.H.: Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity. Sens. Actuators 274, 188–193 (2018)

    Google Scholar 

  40. Ahmed, A.M., Mehaney, A.: Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci Rep 9, 6973 (2019)

    Google Scholar 

  41. Aly, A.H., et al.: Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 10, 31765–31772 (2020)

    Google Scholar 

  42. Abadla, M.M., Elsayed, H.A.: Detection and sensing of hemoglobin using one-dimensional binary photonic crystals comprising a defect layer. Appl. Opt. 59(2), 418–424 (2020)

    Google Scholar 

  43. Bouzidi, A., Bria, D., Falyouni, F., Akjouj, A., Lévêque, G., Azizi, M., Berkhli, H.: A biosensor based on one dimensional photonic crystal for monitoring blood glycemia. J. Mater. Environ. Sci. 8(11), 3892–3896 (2017)

    Google Scholar 

  44. Elsayed, H.A., Mehaney, A.: Theoretical verification of photonic crystals sensor for biodiesel detection and sensing. Phys. Scr. 95, 085507 (2020)

    Google Scholar 

  45. Fu, J., Chen, W., Lv, B.: Tunable defect mode realized by graphene-based photonic crystals. Phys. Lett. A 380, 1793–1798 (2016)

    Google Scholar 

  46. Fan, H.M.: Tunable plasmonic band gap and defect mode in one dimensional photonic crystal covered with graphene. J. Opt. 16 (2014). Art. no. 125005

    Google Scholar 

  47. Abd El-Aziz, O.A., Elsayed, H.A., Sayed, M.I.: One-dimensional defective photonic crystals for the sensing and detection of protein. Appl. Opt. 58(30), 8309–8315 (2019)

    Google Scholar 

  48. Katz, R., Edelson, M.: The Cancer-Fighting Kitchen: Nourishing, Big-Flavor Recipes for Cancer. Ten Speed Press, Crown Publishing Group, New York, USA (2009)

    Google Scholar 

  49. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018)

    Google Scholar 

  50. Yaroslavsky, A.N., et al.: High-contrast map** of basal cell carcinomas. Opt. Lett. 37(4), 644–646 (2012)

    Google Scholar 

  51. Bijalwan, A., Singh, B.K., Rastogi, V.: Analysis of one-dimensional photonic crystal based sensor for detection of blood plasma and cancer cells. Optik 226(1), 165994 (2021)

    Google Scholar 

  52. Aly, A.H., Zaky, Z.A.: Ultra-sensitive photonic crystal cancer cells sensor with a high quality factor. Cryogenics 104, 102991 (2019)

    Google Scholar 

  53. Ramanujam, N.R., Amiri, I., Taya, S.A., Olyaee, S., Udaiyakumar, R., Pandian, A.P.: Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal. Microsyst. Technol. 25, 189–196 (2019)

    Google Scholar 

  54. Panda, A., Devi, P.P.: Photonic crystal biosensor for refractive index based cancerous cell detection. Opt. Fiber Technol. 54, 102123 (2020)

    Google Scholar 

  55. Ayyanar, N., Raja, G.T., Sharma, M., Kumar, D.S.: Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens. J. 18, 7093–7099 (2018)

    Google Scholar 

  56. Sani, M.H., Khosroabadi, S.: A novel design and analysis of high-sensitivity biosensor based on nano-cavity for detection of blood component, diabetes, cancer and glucose concentration. IEEE Sens. J. 20(13), 7161–7168 (2020)

    Google Scholar 

  57. Jabin, M.A., et al.: Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J. 11(4), 1–10 (2019)

    Google Scholar 

  58. https://refractiveindex.info/?shelf=main&book=ZnSe&page=Marple

  59. https://refractiveindex.info/?shelf=main&book=MgF2&page=Dodge-o

  60. Kumar, A., Singh, P., Thapa, K.B.: Study of super absorption properties of 1D graphene and dielectric photonic crystal for novel applications. Opt. Quant. Electron. 52 (2020)

    Google Scholar 

  61. Ghasemi, F., Entezar, S.R., Razi, S.: Terahertz tunable photonic crystal optical filter containing graphene and nonlinear electro-optic polymer. Laser Phys. 29, 056201 (2019)

    Google Scholar 

  62. Liang X.J., et al.: Determination of refractive index for single living cell using integrated biochip. In: Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05., Bd. 2, S. 1712–1715. IEEE (2005)

    Google Scholar 

  63. Sharan, P., Bharadwaj, S. M., Gudagunti, F.D., Deshmukh, P.: Design and modelling of photonic sensor for cancer cell detection. In: Impact of E-Technology on US (IMPETUS), IEEE International Conference on the, S. 20–24. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abinash Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panda, A., Pukhrambam, P.D. (2024). Entwurf und Analyse eines eindimensionalen photonischen Kristall-Biosensor-Geräts zur Identifizierung von Krebszellen. In: Dutta, G., Biswas, A. (eds) Intelligente Nano-Bio-Geräte der nächsten Generation. Springer Spektrum, Singapore. https://doi.org/10.1007/978-981-97-2087-3_8

Download citation

Publish with us

Policies and ethics

Navigation