Reinforced Multiscale Polymer Composites, Properties and Applications

  • Chapter
  • First Online:
Polymer Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 143 Accesses

Abstract

Multiscale composites represent an innovative class of material that integrates both nanoscale as well as macroscale components, capturing the keen interest of researchers and diverse industries. These materials hold promise for application across a wide spectrum of fields, ranging from the automotive industry, aerospace industry, construction, energy, defense sector, environmental applications, etc. These composites exhibit remarkable attributes which encompass exceptional mechanical, electrical, and optical characteristics. Moreover, the nanomaterial constituents boast extraordinarily high aspect ratios, while the fibers offer uniformity, flexibility, and stability. To enhance the desired performance, it is imperative to gain a deep understanding of the selection of suitable reinforcements and precise processing techniques. Overall, this chapter focuses on the reinforcement materials and their impact on the various properties, such as mechanical, electrical, thermal, etc. The article also discusses the classification of composites, techniques, and challenges in the processing along with their utilization in various application areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 111.27
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mercier, J.P., Zambelli, G., Kurz, W.: Introduction to Materials Science. Elsevier (2012)

    Google Scholar 

  2. Bhatia, A., Sehgal, A.K.: Additive manufacturing materials, methods and applications: a review. Mater. Today Proc. 81, 1060–1067 (2023). https://doi.org/10.1016/j.matpr.2021.04.379

    Article  Google Scholar 

  3. Potluri, R., Chaitanya Krishna, N.: Potential and applications of green composites in industrial space. Mater. Today Proc. 22, 2041–2048 (2020). https://doi.org/10.1016/j.matpr.2020.03.218

    Article  Google Scholar 

  4. Gay, D.: Composite Materials: Design and Applications, 4th edn. CRC Press (2022)

    Book  Google Scholar 

  5. Mohammed, L., Ansari, M.N.M., Pua, G., Jawaid, M., Islam, M.S.: A review on natural fiber reinforced polymer composite and its applications. Int. J. Polym. Sci. 2015, 1–15 (2015). https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

  6. Sonnenfeld, C., Mendil-Jakani, H., Agogué, R., Nunez, P., Beauchêne, P.: Thermoplastic/thermoset multilayer composites: a way to improve the impact damage tolerance of thermosetting resin matrix composites. Compos. Struct. 171, 298–305 (2017). https://doi.org/10.1016/j.compstruct.2017.03.044

    Article  Google Scholar 

  7. Al-Maharma, A.Y., Patil, S.P., Markert, B.: Effects of porosity on the mechanical properties of additively manufactured components: a critical review. Mater. Res. Express 7, 122001 (2020). https://doi.org/10.1088/2053-1591/abcc5d

    Article  Google Scholar 

  8. Balakrishnan, P., John, M.J., Pothen, L., Sreekala, M.S., Thomas, S.: Natural fibre and polymer matrix composites and their applications in aerospace engineering. In: Advanced Composite Materials for Aerospace Engineering, pp. 365–383. Elsevier (2016)

    Google Scholar 

  9. Wang, B., Gao, H.: Fibre Reinforced Polymer Composites, pp 15–43 (2021)

    Google Scholar 

  10. Nurazzi, N.M., Asyraf, M.R.M., Khalina, A., Abdullah, N., Aisyah, H.A., Rafiqah, S.A., Sabaruddin, F.A., Kamarudin, S.H., Norrrahim, M.N.F., Ilyas, R.A., Sapuan, S.M.: A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers (Basel) 13, 646 (2021). https://doi.org/10.3390/polym13040646

    Article  Google Scholar 

  11. Fan, J., Njuguna, J.: An introduction to lightweight composite materials and their use in transport structures. In: Lightweight Composite Structures in Transport, pp. 3–34. Elsevier (2016)

    Google Scholar 

  12. Fan, Y., Fowler, G.D., Zhao, M.: The past, present and future of carbon black as a rubber reinforcing filler—a review. J. Clean. Prod. 247, 119115 (2020). https://doi.org/10.1016/j.jclepro.2019.119115

    Article  Google Scholar 

  13. Chawla, K.K.: Composite Materials: Science and Engineering, 3rd ed. Springer Science & Business Media (2012)

    Google Scholar 

  14. Thakur, S., Verma, A., Sharma, B., Chaudhary, J., Tamulevicius, S., Thakur, V.K.: Recent developments in recycling of polystyrene based plastics. Curr. Opin. Green Sustain. Chem. 13, 32–38 (2018). https://doi.org/10.1016/j.cogsc.2018.03.011

    Article  Google Scholar 

  15. Nambiar, S., Yeow, J.T.W.: Polymer-composite materials for radiation protection. ACS Appl. Mater. Interfaces 4, 5717–5726 (2012). https://doi.org/10.1021/am300783d

    Article  Google Scholar 

  16. Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., Elharfi, A.: Polymer composite materials: a comprehensive review. Compos. Struct. 262, 113640 (2021). https://doi.org/10.1016/j.compstruct.2021.113640

    Article  Google Scholar 

  17. Rohatgi, P.K.: Metal matrix composites. Def. Sci. J. 43, 323–349 (1993)

    Article  Google Scholar 

  18. Yadav, R.: Fabrication, characterization, and optimization selection of ceramic particulate reinforced dental restorative composite materials. Polym. Polym. Compos. 30, 096739112110627 (2022). https://doi.org/10.1177/09673911211062755

    Article  Google Scholar 

  19. Buragohain, M.K.: Composite Structures: Design, Mechanics, Analysis, Manufacturing, and Testing. CRC Press (2017)

    Book  Google Scholar 

  20. Subhajit, K., Mitra, D., Das, M.: Toughened Composites: Micro and Macro Systems. CRC Press (2022)

    Google Scholar 

  21. Pirityi, D.Z., Bárány, T., Pölöskei, K.: Hybrid reinforcement of styrene‐butadiene rubber nanocomposites with carbon black, silica, and graphene. J. Appl. Polym. Sci. 139 (2022). https://doi.org/10.1002/app.52766

  22. Kudapa, V.K.: Investigation of carbon black nanoparticles on effectiveness of cementation in oil and gas well. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.07.111

    Article  Google Scholar 

  23. Panthapulakkal, S., Raghunanan, L., Sain, M., Birat, K.C., Tjong, J.: Natural fiber and hybrid fiber thermoplastic composites. In: Green Composites, pp. 39–72. Elsevier (2017)

    Google Scholar 

  24. Nair, A.B., Joseph, R.: Eco-friendly bio-composites using natural rubber (NR) matrices and natural fiber reinforcements. In: Chemistry, Manufacture and Applications of Natural Rubber, pp. 249–283. Elsevier (2014)

    Google Scholar 

  25. Omrani, E., Menezes, P.L., Rohatgi, P.K.: State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Eng. Sci. Technol. Int. J. 19, 717–736 (2016). https://doi.org/10.1016/j.jestch.2015.10.007

    Article  Google Scholar 

  26. Ouarhim, W., Zari, N., Bouhfid, R., Qaiss, A. el kacem: Mechanical performance of natural fibers–based thermosetting composites. In: Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, pp. 43–60. Elsevier (2019)

    Google Scholar 

  27. Senthilkumar, K., Saba, N., Ra**i, N., Chandrasekar, M., Jawaid, M., Siengchin, S., Alotman, O.Y.: Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Constr. Build. Mater. 174, 713–729 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.143

    Article  Google Scholar 

  28. Chand, N., Dwivedi, U.K.: Sliding wear and friction characteristics of sisal fibre reinforced polyester composites: effect of silane coupling agent and applied load. Polym. Compos. 29, 280–284 (2008). https://doi.org/10.1002/pc.20368

    Article  Google Scholar 

  29. Shahzad, A.: Hemp fiber and its composites—a review. J. Compos. Mater. 46, 973–986 (2012). https://doi.org/10.1177/0021998311413623

    Article  Google Scholar 

  30. Sullins, T., Pillay, S., Komus, A., Ning, H.: Hemp fiber reinforced polypropylene composites: the effects of material treatments. Compos. B Eng. 114, 15–22 (2017). https://doi.org/10.1016/j.compositesb.2017.02.001

    Article  Google Scholar 

  31. Ochi, S.: Mechanical properties of Kenaf fibers and Kenaf/PLA composites. Mech. Mater. 40, 446–452 (2008). https://doi.org/10.1016/j.mechmat.2007.10.006

    Article  Google Scholar 

  32. Chollakup, R., Smitthipong, W., Kongtud, W., Tantatherdtam, R.: Polyethylene green composites reinforced with cellulose fibers (coir and palm fibers): effect of fiber surface treatment and fiber content. J. Adhes. Sci. Technol. 27, 1290–1300 (2013). https://doi.org/10.1080/01694243.2012.694275

    Article  Google Scholar 

  33. Liu, Y., Ma, Y., Yu, J., Zhuang, J., Wu, S., Tong, J.: Development and characterization of alkali treated abaca fiber reinforced friction composites. Compos. Interfaces 26, 67–82 (2019). https://doi.org/10.1080/09276440.2018.1472456

    Article  Google Scholar 

  34. Sathishkumar, T., Naveen, J., Satheeshkumar, S.: Hybrid fiber reinforced polymer composites—a review. J. Reinf. Plast. Compos. 33, 454–471 (2014). https://doi.org/10.1177/0731684413516393

    Article  Google Scholar 

  35. Begum, K., Islam, M.: Natural fiber as a substitute to synthetic fiber in polymer composites: a review. Res. J. Eng. Sci. 2, 46–53 (2013)

    Google Scholar 

  36. Sathishkumar, T., Satheeshkumar, S., Naveen, J.: Glass fiber-reinforced polymer composites—a review. J. Reinf. Plast. Compos. 33, 1258–1275 (2014). https://doi.org/10.1177/0731684414530790

    Article  Google Scholar 

  37. Komanduri, R.: Machining of fiber-reinforced composites. Mach. Sci. Technol. 1, 113–152 (1997). https://doi.org/10.1080/10940349708945641

    Article  Google Scholar 

  38. Gaugel, S., Sripathy, P., Haeger, A., Meinhard, D., Bernthaler, T., Lissek, F., Kaufeld, M., Knoblauch, V., Schneider, G.: A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP). Compos. Struct. 155, 173–183 (2016). https://doi.org/10.1016/j.compstruct.2016.08.004

    Article  Google Scholar 

  39. Xu, Z., Gao, C.: Graphene fiber: a new trend in carbon fibers. Mater. Today 18, 480–492 (2015). https://doi.org/10.1016/j.mattod.2015.06.009

    Article  Google Scholar 

  40. Liu, Q., Paavola, J.: Lightweight design of composite laminated structures with frequency constraint. Compos. Struct. 156, 356–360 (2016). https://doi.org/10.1016/j.compstruct.2015.08.116

    Article  Google Scholar 

  41. Shekar, K.C., Prasad, B.A., Prasad, N.E.: Interlaminar shear strength of multi-walled carbon nanotube and carbon fiber reinforced, epoxy—matrix hybrid composite. Proc. Mater. Sci. 6, 1336–1343 (2014). https://doi.org/10.1016/j.mspro.2014.07.112

    Article  Google Scholar 

  42. Boroujeni, A.Y., Tehrani, M., Nelson, A.J., Al-Haik, M.: Hybrid carbon nanotube–carbon fiber composites with improved in-plane mechanical properties. Compos. B Eng. 66, 475–483 (2014). https://doi.org/10.1016/j.compositesb.2014.06.010

    Article  Google Scholar 

  43. Srivastava, V.K., Gries, T., Veit, D., Quadflieg, T., Mohr, B., Kolloch, M.: Effect of nanomaterial on mode I and mode II interlaminar fracture toughness of woven carbon fabric reinforced polymer composites. Eng. Fract. Mech. 180, 73–86 (2017). https://doi.org/10.1016/j.engfracmech.2017.05.030

    Article  Google Scholar 

  44. Shelly, D., Nanda, T., Mehta, R.: Synergistic effect of compatibilized nanoclay/polyethylene fibers on the impact strength of epoxy-glass fiber nanocomposites. Polym. Compos. 44, 6528–6541 (2023). https://doi.org/10.1002/pc.27577

    Article  Google Scholar 

  45. Dericiler, K., Zafar, S., Sas, H.S., Saner Okan, B.: The effect of reinforcement aspect ratio on the performance of <scp>PA66</scp> composites with recycled carbon fiber and upcycled graphene nanoplatelets: An interface characterization from process to modeling. J. Appl. Polym. Sci. 140 (2023). https://doi.org/10.1002/app.54352

  46. Nimbagal, V., Banapurmath, N.R., Umarfarooq, M.A., Revankar, S., Sajjan, A.M., Soudagar, M.E.M., Shahapurkar, K., Alamir, M.A., Alarifi, I.M., Elfasakhany, A.: Mechanical and fracture properties of carbon nano fibers/short carbon fiber epoxy composites. Polym. Compos. 44, 3977–3989 (2023). https://doi.org/10.1002/pc.27371

    Article  Google Scholar 

  47. Joseph, L., Madhavan, M.K., Jayanarayanan, K., Pegoretti, A.: Evaluation of hybrid fiber multiscale polymer composites for structural confinement under cyclic axial compressive loading. J. Compos. Sci. 7, 152 (2023). https://doi.org/10.3390/jcs7040152

    Article  Google Scholar 

  48. Kim, J.-W., Gardner, J.M., Sauti, G., Wincheski, R.A., Jensen, B.D., Wise, K.E., Siochi, E.J.: Multi-scale hierarchical carbon nanotube fiber reinforced composites towards enhancement of axial/transverse strength and fracture toughness. Compos. Part A Appl. Sci. Manuf. 167, 107449 (2023). https://doi.org/10.1016/j.compositesa.2023.107449

    Article  Google Scholar 

  49. Fereiduni, E., Ghasemi, A., Elbestawi, M.: Microstructural characterization and mechanical properties of nano-scale/sub-micron TiB-reinforced titanium matrix composites fabricated by laser powder bed fusion. J. Alloys Compd. 896, 163054 (2022). https://doi.org/10.1016/j.jallcom.2021.163054

    Article  Google Scholar 

  50. Azimpour-Shishevan, F., Akbulut, H., Mohtadi-Bonab, M.A.: Synergetic effects of carbon nanotube and graphene addition on thermo-mechanical properties and vibrational behavior of twill carbon fiber reinforced polymer composites. Polym. Test. 90, 106745 (2020). https://doi.org/10.1016/j.polymertesting.2020.106745

    Article  Google Scholar 

  51. Zakaria, M.R., Abdul Kudus, M.H., Md Akil, H., Thirmizir, M.Z.M., Abdul Malik, M.F.I., Othman, M.B.H., Ullah, F., Javed, F.: Comparative study of single‐layer graphene and single‐walled carbon nanotube‐filled epoxy nanocomposites based on mechanical and thermal properties. Polym. Compos. 40 (2019). https://doi.org/10.1002/pc.25173

  52. Du, S.-S., Li, F., **ao, H.-M., Li, Y.-Q., Hu, N., Fu, S.-Y.: Tensile and flexural properties of graphene oxide coated-short glass fiber reinforced polyethersulfone composites. Compos. B Eng. 99, 407–415 (2016). https://doi.org/10.1016/j.compositesb.2016.06.023

    Article  Google Scholar 

  53. Tüzemen, M.Ç., Salamcı, E., Avcı, A.: Enhancing mechanical properties of bolted carbon/epoxy nanocomposites with carbon nanotube, nanoclay, and hybrid loading. Compos. B Eng. 128, 146–154 (2017). https://doi.org/10.1016/j.compositesb.2017.07.001

    Article  Google Scholar 

  54. Udupa, G., Rao, S.S., Gangadharan, K.V.: Functionally graded composite materials: an overview. Proc. Mater. Sci. 5, 1291–1299 (2014). https://doi.org/10.1016/j.mspro.2014.07.442

    Article  Google Scholar 

  55. Wang, B., Duan, Y., Zhang, J.: Titanium dioxide nanoparticles-coated aramid fiber showing enhanced interfacial strength and UV resistance properties. Mater. Des. 103, 330–338 (2016). https://doi.org/10.1016/j.matdes.2016.04.085

    Article  Google Scholar 

  56. Cao, S., Tao, Y., Li, H., Ren, M., Sun, J.: Multiscale hybrid CNT and CF reinforced PEEK composites with enhanced EMI properties. Nanocomposites 8, 184–193 (2022). https://doi.org/10.1080/20550324.2022.2100683

    Article  Google Scholar 

  57. Ackermann, A.C., Demleitner, M., Guhathakurta, J., Carosella, S., Ruckdäschel, H., Simon, S., Fox, B.L., Middendorf, P.: Mechanical, thermal, and electrical properties of amine- and non-functionalized reduced graphene oxide/epoxy carbon fiber-reinforced polymers. Polym. Compos. 44, 4937–4954 (2023). https://doi.org/10.1002/pc.27461

    Article  Google Scholar 

  58. Abushammala, H., Mao, J.: Waste iron filings to improve the mechanical and electrical properties of glass fiber-reinforced epoxy (GFRE) composites. J. Compos. Sci. 7, 90 (2023). https://doi.org/10.3390/jcs7030090

    Article  Google Scholar 

  59. Kang, G.-H., Kim, M., Park, Y.-B.: Improvement of electrical conductivity in glass bubble-carbon nanotube/polyamide 6 hybrid scale composite through novel mechanical forming and segregated network morphology. Polym. Test. 126, 108138 (2023). https://doi.org/10.1016/j.polymertesting.2023.108138

    Article  Google Scholar 

  60. Ramkumar, R., Chellamuthu, S.: Enhancing the mechanical, thermal and electrical properties of alumina-MWCNT hybrid nanofiller reinforced epoxy composites. Materiali in Tehnologije 57 (2023). https://doi.org/10.17222/mit.2022.684

  61. Zhang, C., Duan, Y., **ao, H., Wang, B., **n, Z., Liu, G., Wang, F., Cui, W.: Preparation of MWCNTs/CF/PEEK multi-scale composites with good mechanical and electrical conductivity by a two-step process of AFP and out-of-autoclave tempering. Compos. Part C Open Access 9, 100321 (2022). https://doi.org/10.1016/j.jcomc.2022.100321

    Article  Google Scholar 

  62. Zhang, C., Ling, Y., Zhang, X., Liang, M., Zou, H.: Ultra-thin carbon fiber reinforced carbon nanotubes modified epoxy composites with superior mechanical and electrical properties for the aerospace field. Compos. Part A Appl. Sci. Manuf. 163, 107197 (2022). https://doi.org/10.1016/j.compositesa.2022.107197

    Article  Google Scholar 

  63. Bao, W.-Z., Chen, J., Li, J.-Z., Yu, B.-H., Liu, C.-Y., Jiang, P., Liu, Z.-J., Hu, K.-T., Louzguine-Luzgin, D.V., **e, G.-Q.: Outstanding strength and conductivity of metallic glass composites with multiscale configuration. Rare Met. 42, 3099–3113 (2023). https://doi.org/10.1007/s12598-023-02308-x

    Article  Google Scholar 

  64. Bhanuprakash, L., Parasuram, S., Varghese, S.: Experimental investigation on graphene oxides coated carbon fibre/epoxy hybrid composites: Mechanical and electrical properties. Compos. Sci. Technol. 179, 134–144 (2019). https://doi.org/10.1016/j.compscitech.2019.04.034

    Article  Google Scholar 

  65. Zhang, C., Zhang, X., Ling, Y., Liang, M., Zou, H.: Chitosan-doped carbon nanotubes encapsulating spread carbon fiber composites with superior mechanical, thermal, and electrical properties. Compos. Sci. Technol. 230, 109755 (2022). https://doi.org/10.1016/j.compscitech.2022.109755

    Article  Google Scholar 

  66. Wang, Z., Zhou, M., **ao, H., Yuan, S.: Development and evaluation of multiscale fiber-reinforced composite powders for powder-bed fusion process. Chin. J. Mech. Eng. Addit. Manuf. Front. 2, 100079 (2023). https://doi.org/10.1016/j.cjmeam.2023.100079

    Article  Google Scholar 

  67. Wu, Q., Yang, L., Chen, Z., Yang, M., Liu, T., Li, M., Mukhopadhyaya, P.: SiO2 aerogel multiscale reinforced by glass fibers and SiC nanowhiskers for thermal insulation. J. Porous Mater. 30, 1587–1596 (2023). https://doi.org/10.1007/s10934-023-01432-4

    Article  Google Scholar 

  68. **, X., Liu, C., Huang, H., Pan, R., Wu, C., Yan, X., Wang, H., Pan, Y., Hong, C., Zhang, X.: Multiscale, elastic, and low-density carbon fibre/siliconoxycarbide-phenolic interpenetrating aerogel nanocomposite for ablative thermal protection. Compos. B Eng. 245, 110212 (2022). https://doi.org/10.1016/j.compositesb.2022.110212

    Article  Google Scholar 

  69. Wu, Z., Dong, J., Teng, C., Li, X., Zhao, X., Qin, X., Ji, C., Zhang, Q.: Polyimide-based composites reinforced by carbon nanotube-grafted carbon fiber for improved thermal conductivity and mechanical property. Compos. Commun. 39, 101543 (2023). https://doi.org/10.1016/j.coco.2023.101543

    Article  Google Scholar 

  70. Rafiee, M., Nitzsche, F., Laliberte, J., Hind, S., Robitaille, F., Labrosse, M.R.: Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide and reduced-graphene oxide. Compos. B Eng. 164, 1–9 (2019). https://doi.org/10.1016/j.compositesb.2018.11.051

    Article  Google Scholar 

  71. Neisiany, R.E., Lee, J.K.Y., Khorasani, S.N., Ramakrishna, S.: Towards the development of self-healing carbon/epoxy composites with improved potential provided by efficient encapsulation of healing agents in core-shell nanofibers. Polym. Test. 62, 79–87 (2017). https://doi.org/10.1016/j.polymertesting.2017.06.016

    Article  Google Scholar 

  72. Wu, X.-F., Rahman, A., Zhou, Z., Pelot, D.D., Sinha-Ray, S., Chen, B., Payne, S., Yarin, A.L.: Electrospinning core-shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites. J. Appl. Polym. Sci. 129, 1383–1393 (2013). https://doi.org/10.1002/app.38838

    Article  Google Scholar 

  73. Gao, Y., Liu, L., Wu, Z., Zhong, Z.: Toughening and self-healing fiber-reinforced polymer composites using carbon nanotube modified poly (ethylene-co-methacrylic acid) sandwich membrane. Compos. Part A Appl. Sci. Manuf. 124, 105510 (2019). https://doi.org/10.1016/j.compositesa.2019.105510

    Article  Google Scholar 

  74. Qu, M., Cai, J., Li, X., Wu, J., Chen, H., Zheng, Z., Nilsson, F., Liu, S., Gao, Q.: Mechanical and electrical properties of carbon nanotube/epoxy/glass-fiber composites intended for <scp>nondestructive</scp> testing. Polym. Adv. Technol. 34, 2554–2563 (2023). https://doi.org/10.1002/pat.6071

    Article  Google Scholar 

  75. Hostettler, N., Hubert, P.: Electrical characterization and sensing capabilities of self-assembly multi-scale multi-phase graphene-based composites. Carbon N Y 208, 131–139 (2023). https://doi.org/10.1016/j.carbon.2023.03.005

    Article  Google Scholar 

  76. Liang, B., Fang, L., Hu, Y., Yang, G., Zhu, Q., Ye, X.: Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres. Nanoscale 6, 4264–4274 (2014). https://doi.org/10.1039/C3NR06057H

    Article  Google Scholar 

  77. Calestani, D., Villani, M., Culiolo, M., Delmonte, D., Coppedè, N., Zappettini, A.: Smart composites materials: a new idea to add gas-sensing properties to commercial carbon-fibers by functionalization with ZnO nanowires. Sens. Actuators B Chem. 245, 166–170 (2017). https://doi.org/10.1016/j.snb.2017.01.109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soma Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrahari, R., Kushwaha, R., Verma, A., Banerjee, S. (2024). Reinforced Multiscale Polymer Composites, Properties and Applications. In: Moharana, S., Sahu, B.B., Nayak, A.K., Tiwari, S.K. (eds) Polymer Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-2075-0_5

Download citation

Publish with us

Policies and ethics

Navigation