Primary and Secondary Processing of Polymer Matrix Composites

  • Chapter
  • First Online:
Polymer Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 144 Accesses

Abstract

The current chapter presents the array of various processes of manufacturing related to polymer matrix composites (PMCs). PMC is defined as the combination of a polymer matrix and a reinforcement phase. Over the last decade, there has been a growing interest in PMCs, driven by their enhanced mechanical, thermal, and electrical properties, making them applicable in industries such as automotive and aerospace. Numerous studies, encompassing both experimental and theoretical approaches, have been conducted to explore the mechanical, thermal, and electrical characteristics of PMCs. Researchers have extensively evaluated the impact of primary and secondary processing on the mechanical, electrical, tribological, and thermal properties of PMCs. This chapter extensively discusses the fabrication methods, advantages, limitations, and properties associated with the primary and secondary processing of PMC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 111.27
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 137.14
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ray, B.C., Rathore, D.: Durability and integrity studies of environmentally conditioned interfaces in fibrous polymeric composites: critical concepts and comments. Adv. Coll. Interf. Sci. 209, 68–83 (2014). https://doi.org/10.1016/j.cis.2013.12.014

    Article  Google Scholar 

  2. Ray, B.C., Rathore, D.: A review on mechanical behavior of FRP composites at different loading speeds. Crit. Rev. Solid State Mater. Sci. 40, 119–135 (2015). https://doi.org/10.1080/10408436.2014.940443

    Article  Google Scholar 

  3. Mahato, K.K., Dutta, K., Ray, B.C.: 6—Emerging advancement of fiber-reinforced polymer composites in structural applications. In: Samui, P., Kim, D., Iyer, N.R., Chaudhary, S., (eds.) New Materials in Civil Engineering, Butterworth-Heinemann, pp. 221–71 (2020). https://doi.org/10.1016/B978-0-12-818961-0.00006-5

  4. Hollaway, L.C.: A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr. Build. Mater. 24, 2419–2445 (2010). https://doi.org/10.1016/j.conbuildmat.2010.04.062

    Article  Google Scholar 

  5. Mallick, P.K.: Processing of Polymer Matrix Composites. CRC Press (2017)

    Google Scholar 

  6. Mahato, K.K., Biswal, M., Rathore, D.K., Prusty, R.K., Dutta, K., Ray, B.C.: Effect of loading rate on tensile properties and failure behavior of glass fibre/epoxy composite. IOP Conf. Ser: Mater. Sci. Eng. 115, 012017 (2016). https://doi.org/10.1088/1757-899X/115/1/012017

    Article  Google Scholar 

  7. Hawileh, R.A., Abu-Obeidah, A., Abdalla, J.A., Al-Tamimi, A.: Temperature effect on the mechanical properties of carbon, glass and carbon–glass FRP laminates. Constr. Build. Mater. 75, 342–348 (2015). https://doi.org/10.1016/j.conbuildmat.2014.11.020

    Article  Google Scholar 

  8. Sethi, S., Ray, B.C.: An assessment of mechanical behavior and fractography study of glass/epoxy composites at different temperatures and loading speeds. Mater. Des. 64, 160–165 (2014). https://doi.org/10.1016/j.matdes.2014.07.017

    Article  Google Scholar 

  9. Mahato, K.K., Dutta, K., Chandra, R.B.: Assessment of mechanical, thermal and morphological behavior of nano-Al2O3 embedded glass fiber/epoxy composites at in-situ elevated temperatures. Compos. B Eng. 166, 688–700 (2019). https://doi.org/10.1016/j.compositesb.2019.03.009

    Article  Google Scholar 

  10. Kumar Mahato, K., Kumar Rathore, D., Dutta, K., Kumar Prusty, R., Chandra, R.B.: Effect of severely thermal shocked nano-Al2O3 filled glass fiber reinforced polymeric composites: an assessment on tensile, thermal and morphological behaviour. Mater. Today: Proc. 33, 5521–5525 (2020). https://doi.org/10.1016/j.matpr.2020.03.334

    Article  Google Scholar 

  11. Nayak, R.K., Mahato, K.K., Routara, B.C., Ray, B.C.: Evaluation of mechanical properties of Al2O3 and TiO2 nano filled enhanced glass fiber reinforced polymer composites. J. Appl. Polym. Sci. 133 (2016). https://doi.org/10.1002/app.44274

  12. Kumar, D.S., Shukla, M.J., Mahato, K.K., Rathore, D.K., Prusty, R.K., Ray, B.C.: Effect of post-curing on thermal and mechanical behavior of GFRP composites. IOP Conf. Ser: Mater. Sci. Eng. 75, 012012 (2015). https://doi.org/10.1088/1757-899X/75/1/012012

    Article  Google Scholar 

  13. Dillon, G., Mallon, P., Monaghan, M.: The autoclave processing of composites. In: Gutowski, T.G. (ed.) Advanced Composites Manufacturing, pp. 207–258. John Wiley & Sons, New York (1997)

    Google Scholar 

  14. Lekakou MGB Constantina: Processing for Laminated Structures. CRC Press, Composites Engineering Handbook (1997)

    Google Scholar 

  15. Bloom, L.D., Wang, J., Potter, K.D.: Damage progression and defect sensitivity: an experimental study of representative wrinkles in tension. Compos. B Eng. 45, 449–458 (2013). https://doi.org/10.1016/j.compositesb.2012.05.021

    Article  Google Scholar 

  16. Elkington, M., Bloom, D., Ward, C., Chatzimichali, A., Potter, K.: Hand layup: understanding the manual process. Adv. Manuf.: Polymer Compos. Sci. 1, 138–151 (2015). https://doi.org/10.1080/20550340.2015.1114801

    Article  Google Scholar 

  17. Centea, T., Grunenfelder, L.K., Nutt, S.R.: A review of out-of-autoclave prepregs—Material properties, process phenomena, and manufacturing considerations. Compos. A Appl. Sci. Manuf. 70, 132–154 (2015). https://doi.org/10.1016/j.compositesa.2014.09.029

    Article  Google Scholar 

  18. Ciriscioli, P.R., Wang, Q., Springer, G.S.: Autoclave curing—Comparisons of model and test results. J. Compos. Mater. 26, 90–102 (1992). https://doi.org/10.1177/002199839202600106

    Article  Google Scholar 

  19. Mallick, P.K.: Compression molding. In: Mallick, P.K., Newman, S. (eds.) Composite materials technology—Processes and properties, pp. 67–102. Hanser Publishers, Munich, Vienna, New York. n.d. (1990)

    Google Scholar 

  20. Meyer, R.W.: Handbook of Polyester Molding Compounds and Molding Technology. Springer US, Boston, MA (1987). https://doi.org/10.1007/978-1-4613-1961-0

  21. Kia, H.G.: In: Kia, H.G. (ed.) Sheet Molding Compounds: Science and Technology, pp. 257–257. Hanser, Munich (1993)

    Google Scholar 

  22. Liquid Moulding Technologies—1st Edition. n.d. https://shop.elsevier.com/books/liquid-moulding-technologies/rudd/978-1-85573-242-1. Accessed 24 Jan 2024

  23. Fong, L., Advani, S.G.: Resin transfer molding. In: Peters, S.T. (ed.) Handbook of Composites, pp. 433–455. Springer US, Boston, MA (1998). https://doi.org/10.1007/978-1-4615-6389-1_21

  24. Peters, S.T., Tarnopol’skii, Y.M.: Filament winding. In: Mallick, P.K. (ed.) Composites Engineering Handbook, pp. 515–548. Marcel Dekker, New York (1997)

    Google Scholar 

  25. Sumerak, J.E.: The pultrusion process for continuous automated manufacture of engineered composite profiles. In: Mallick, P.K. (ed.) Composites Engineering Handbook, pp. 549–577. Marcel Dekker, New York (1997)

    Google Scholar 

  26. Starr, T.F. (ed.): Pultrusion for Engineers. Woodhead, Cambridge, UK (2000)

    Google Scholar 

  27. Wilson, B.A.: Pultrusion. In: Peters, S.T. (ed.) Handbook of Composites, pp. 488–524. Springer, New York (1998)

    Google Scholar 

  28. Dillard, D.A. (ed.) Front matter. In: Advances in Structural Adhesive Bonding, pp. i–iii. Woodhead Publishing (2010). https://doi.org/10.1533/9781845698058.frontmatter

  29. Ray, BNVSGGK, Kumar Mahato, K., Prusty, R.K., Chandra, B.: Challenges of Adhesively Bonded Joints and Their Advantages Over Mechanical Fastening. Failure of Fibre-Reinforced Polymer Composites. CRC Press (2021)

    Google Scholar 

  30. Budhe, S., Banea, M.D., de Barros, S., da Silva, L.F.M.: An updated review of adhesively bonded joints in composite materials. Int. J. Adhes. Adhes. 72, 30–42 (2017). https://doi.org/10.1016/j.ijadhadh.2016.10.010

    Article  Google Scholar 

  31. Tanahashi, M., Tanahashi, M.: Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding-based approach without surface modification of nanofillers. Materials 3, 1593–1619 (2010). https://doi.org/10.3390/ma3031593

    Article  Google Scholar 

  32. Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000). https://doi.org/10.1063/1.126500

    Article  Google Scholar 

  33. Song, Y.S., Youn, J.R.: Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43, 1378–1385 (2005). https://doi.org/10.1016/j.carbon.2005.01.007

    Article  Google Scholar 

  34. Chang, F.-K., Lessard, L.B.: Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: part I—Analysis. J. Compos. Mater. 25, 2–43 (1991). https://doi.org/10.1177/002199839102500101

    Article  Google Scholar 

  35. Barbezat, M., Brunner, A.J., Necola, A., Rees, M., Gasser, Ph., Terrasi, G.: Fracture behavior of GFRP laminates with nanocomposite epoxy resin matrix. J. Compos. Mater. 43, 959–976 (2009).https://doi.org/10.1177/0021998308100799

  36. Soundararajah, Q.Y., Karunaratne, B.S.B., Rajapakse, R.M.G.: Mechanical properties of Poly(vinyl alcohol) montmorillonite nanocomposites. J. Compos. Mater. 44, 303–311 (2010). https://doi.org/10.1177/0021998309347040

    Article  Google Scholar 

  37. Chatterjee, A., Islam, M.S.: Fabrication and characterization of TiO2–epoxy nanocomposite. Mater. Sci. Eng., A 487, 574–585 (2008). https://doi.org/10.1016/j.msea.2007.11.052

    Article  Google Scholar 

  38. Nayak, R.K., Ray, B.C.: Influence of seawater absorption on retention of mechanical properties of nano-TiO2 embedded glass fiber reinforced epoxy polymer matrix composites. Archiv. Civ. Mech. Eng. 18, 1597–1607 (2018). https://doi.org/10.1016/j.acme.2018.07.002

    Article  Google Scholar 

  39. Nayak, R.K., Mahato, K.K., Ray, B.C.: Water absorption behavior, mechanical and thermal properties of nano TiO2 enhanced glass fiber reinforced polymer composites. Compos. A Appl. Sci. Manuf. 90, 736–747 (2016). https://doi.org/10.1016/j.compositesa.2016.09.003

    Article  Google Scholar 

  40. Chen, C.-H., Jian, J.-Y., Yen, F.-S.: Preparation and characterization of epoxy/γ-aluminum oxide nanocomposites. Compos. A Appl. Sci. Manuf. 40, 463–468 (2009). https://doi.org/10.1016/j.compositesa.2009.01.010

    Article  Google Scholar 

  41. Greenhalgh, E.: Failure Analysis and Fractography of Polymer Composites. Woodhead Publishing (2009)

    Google Scholar 

  42. Schadler, L.S.: Polymer-Based and Polymer-Filled Nanocomposites. Nanocomposite Science and Technology. Wiley-Blackwell, pp. 77–153 (2004). https://doi.org/10.1002/3527602127.ch2

  43. Popall, M., Meyer, H., Schmidt, H., Schulz, J.: Inorganic-organic composites (Ormocers) as structured layers for microelectronics. MRS Proc. 180, 995 (1990). https://doi.org/10.1557/PROC-180-995n.d

    Article  Google Scholar 

  44. Claude, C., Garetz, B., Okamoto, Y., Tripathy, S.: The preparation and characterization of organically modified silicates that exhibit nonlinear optical properties. Mater. Lett. 14, 336–342 (1992). https://doi.org/10.1016/0167-577X(92)90049-P

    Article  Google Scholar 

  45. Morikawa, A., Iyoku, Y., Kakimoto, M., Imai, Y.: Preparation of a new class of polyimide-silica hybrid films by sol-gel process. Polym. J. 24, 107 (1992)

    Article  Google Scholar 

  46. Goda, H., Frank, C.W.: Fluorescence studies of the hybrid composite of segmented-polyurethane and silica. Chem. Mater. 13, 2783–2787 (2001). https://doi.org/10.1021/cm000711w

    Article  Google Scholar 

  47. Luo, H., Li, W., Ao, H., Li, G., Tu, J., **ong, G., et al.: Preparation, structural characterization, and in vitro cell studies of three-dimensional SiO2–CaO binary glass scaffolds built ofultra-small nanofibers. Mater. Sci. Eng. C 76, 94–101 (2017). https://doi.org/10.1016/j.msec.2017.02.134

    Article  Google Scholar 

  48. Hashimoto, M., Takadama, H., Mizuno, M., Kokubo, T.: Enhancement of mechanical strength of TiO2/high-density polyethylene composites for bone repair with silane-coupling treatment. Mater. Res. Bull. 41, 515–524 (2006). https://doi.org/10.1016/j.materresbull.2005.09.014

    Article  Google Scholar 

  49. Kalaitzidou, K., Fukushima, H., Drzal, L.T.: A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos. Sci. Technol. 67, 2045–2051 (2007). https://doi.org/10.1016/j.compscitech.2006.11.014

    Article  Google Scholar 

  50. Chae, D.W., Kim, B.C.: Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polym. Adv. Technol. 16, 846–850 (2005). https://doi.org/10.1002/pat.673

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Kumar Mahato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahato, K.K., Moharana, S. (2024). Primary and Secondary Processing of Polymer Matrix Composites. In: Moharana, S., Sahu, B.B., Nayak, A.K., Tiwari, S.K. (eds) Polymer Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-2075-0_3

Download citation

Publish with us

Policies and ethics

Navigation