Synthesis and Processing Techniques of Polymer Composites

  • Chapter
  • First Online:
Polymer Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 145 Accesses

Abstract

In this chapter, composites are macroscopic-scale materials created by the fusion of two or more materials with various chemical, physical, and morphological components. These materials acquire certain brand-new or enhanced mechanical, chemical, physical, and other properties that are unrelated to those of their constituent parts. To meet some unique uses, these composite materials are created and synthesized. Biodegradable polymers have been the subject of substantial investigation by polymer scientists, and they offer a wide range of potential uses in the field of medicine. Different biopolymers have been created and used in a variety of biomedical applications nowadays. The science and technology of biopolymers are still in their infancy of development, despite the apparent explosion of biopolymers in medical science. Through diligent study and development, there are tremendous prospects for biopolymers to permeate every aspect of medical science. To prepare biopolymers, various polymerization methods and techniques are discussed in this chapter. The focus is on the fundamental characteristics, the synthesis methods, and the biomedical uses of biopolymers. Different processing procedures used for the production of devices have been addressed to produce practical biomedical devices from polymers to suit medical science's requirements. The main focus of this review is on the benefits of polymeric materials-based composite over other traditional materials and how they are used in the biomedical area. Additionally, viewpoints in this area have been highlighted, and conclusions have been drawn. The pertinent literature was gathered from a variety of sources, including books, websites, journal papers, review articles, and Google sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeon, I.Y., Baek, J.B.: Nanocomposites derived from polymers and inorganic nanoparticles. Materials 3, 3654–3674 (2010)

    Article  Google Scholar 

  2. Oladele, I.O., Adelani, S.O., Ganiu Agbabiaka, O., Hope Adegun, M.: Applications and disposal of polymers and polymer composites: a review. Eur. J. Adv. Eng. Technol. 9, 65–89 (2022)

    Google Scholar 

  3. Meysam, T., Nuruldiyanah, K., Zahra, D.E., Yee, L., Ashen, G., Chandima, G.: Conventional and advanced composites in aerospace industry: technologies revisited. Am. J. Aerosp. Eng. 5, 9–15 (2018)

    Article  Google Scholar 

  4. De, S.K., White, J.R.: Short Fiber-Polymer Composites. Woodhead, Cambridge, UK (1996)

    Google Scholar 

  5. Atmakuri, A., Palevicius, A., Vilkauskas, A., Janusas, G.: Review of hybrid fibre-based composites with nanoparticles-Material properties and application. Polymers 12, 2088–2118 (2020)

    Article  Google Scholar 

  6. Aldousiri, B., Shalwan, A., Chin, C.W.: A review on tribological behaviour of polymeric composites and future reinforcements. Adv. Mater. Sci. Eng. 2013, 1–8 (2013)

    Google Scholar 

  7. Mustafa, N.S., Omer, M.A., Garlnabi, E.M., Ismail, H.M.: Reviewing of general polymer types, properties and application in medical field. Int. J. Sc. Res. 5, 212–221 (2016)

    Google Scholar 

  8. Kmetty, A., Bárány, T., Karger-Kocsis, J.: Self-reinforced polymeric materials: a review. Prog. Polym. Sci. 35, 1288–1310 (2010)

    Article  Google Scholar 

  9. Thori, P., Sharma, P., Bhargava, M.: An approach of composite materials in industrial machinery: advantages, disadvantages and applications. Int. J. Res. Eng. Technol. 2, 350–355 (2013)

    Article  Google Scholar 

  10. Ali, N., Zhang, B., Zhang, H., Zaman, W., Li, W., Zhang, Q.: Key synthesis of magnetic Janus nanoparticles using a modified facile method. Particuology 17, 59–65 (2014)

    Article  Google Scholar 

  11. Kessler, M.R.: Polymer matrix composites: a perspective for a special issue of polymer reviews. Polym. Rev. 52, 229–233 (2012)

    Article  Google Scholar 

  12. Masoud, E.M., Liu, L., Peng, B.: Synthesis, characterization, and applications of polymer nanocomposites. J. Nanomater. 2020, 1–2 (2020)

    Article  Google Scholar 

  13. Saeed, K., Khan, I., Ahmad, Z., Khan, B.: Preparation, analyses and application of cobalt-manganese oxides/nylon 6,6 nanocomposites. Polym. Bull. 75, 4657–4669 (2018)

    Article  Google Scholar 

  14. Schmidt, G., Malwitz, M.M.: Properties of polymer–nanoparticle composites. Curr Opin Colloid Interf. Sci. 8, 103–108 (2003)

    Article  Google Scholar 

  15. Ali, N., Zhang, B., Zhang, H., Zaman, W., Li, X., Li, W., et al.: Interfacially active and magnetically responsive composite nanoparticles with raspberry like structure; synthesis and its applications for heavy crude oil/water separation. Colloids Surf. A Physicochem Eng. Asp 472, 38–49 (2015)

    Article  Google Scholar 

  16. Hanemann, T., Szabo, D.V.: Polymer–nanoparticle composites: from synthesis to modern applications. Materials 3, 3468–3517 (2010)

    Article  Google Scholar 

  17. Wang, R., Zheng, S., Zheng, Y.P.: Polymer Matrix Composites and Technology, 1st edn. Woodhead Publishing, Cambridge, UK (2011)

    Book  Google Scholar 

  18. Yan, L.T., **e, X.M.: Computational modelling and simulation of nanoparticle self-assembly in polymeric systems: structures, properties and external field effects. Prog. Polym. Sci. 38, 369–405 (2013)

    Article  Google Scholar 

  19. Rehab, A., Salahuddin, N.: Nanocomposite materials based on polyurethane intercalated into montmorillonite clay. Mater. Sci. Eng., A 399, 368–376 (2005)

    Article  Google Scholar 

  20. Tanahashi, M.: Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding-based approach without surface modification of nanofillers. Materials 3, 1593–1619 (2010)

    Article  Google Scholar 

  21. Parameswaran Pillai, J., Kurian, H. N., Yu Yingfeng, T.: Nanocomposite Materials, Taylor and Francis, USA (2016)

    Google Scholar 

  22. Balazs, A.C., Singh, C., Zhulina, E.: Modeling the interactions between polymers and clay surfaces through selfconsistent field theory. Macromolecules 31, 8370–8381 (1998)

    Article  Google Scholar 

  23. Balazs, A.C., Singh, C., Zhulina, E., Lyatskaya, Y.: Modeling the phase behavior of polymer/clay nanocomposites. Acc. Chem. Res. 8, 651–657 (1999)

    Article  Google Scholar 

  24. Lyatskaya, Y., Balazs, A.C.: Modeling the phase behavior of polymer- clay composites. Macromolecules 31, 6676–6680 (1998)

    Article  Google Scholar 

  25. Vaia, R.A., Giannelis, E.P.: Lattice of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30, 7990–7999 (1997)

    Article  Google Scholar 

  26. Chen, T.K., Tien, Y.I., Wei, K.H.: Synthesis and characterization of novel segmented polyurethane/clay nanocomposite via poly(e-caprolactone)/clay. J. Polym. Sci.: Part A Polym. Chem. 37, 2225–2233 (1999)

    Google Scholar 

  27. Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 1–63 (2000)

    Article  Google Scholar 

  28. Haraguchi, K.: Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym. J. 43, 223–241 (2011)

    Article  Google Scholar 

  29. Lee, H.S., Choi, M.Y., Anandhan, S., Baik, D.H., Seo, S.W.: Microphase structure and physical properties of polyurethane/ organoclay nanocomposites. ACS PMSE Preprints 91, 638 (2004)

    Google Scholar 

  30. Roy, A., Joshi, M., Butola, B.S.: Preparation and antimicrobial assessment of zinc-montmorillonite intercalates based HDPE nanocomposites: a cost-effective and safe bioactive plastic. J. Clean Prod. 212, 1518–1525 (2019)

    Google Scholar 

  31. Sinha, T., Ahmaruzzaman, M., Bhattacharjee, A.: A simple approach for the synthesis of silver nanoparticles and their application as a catalyst for the photodegradation of methyl violet 6B dye under solar irradiation. J. Environ. Chem. Eng. 2, 2269–2279 (2014)

    Article  Google Scholar 

  32. Giri, A., Bhowmick, R., Prodhan, C., Majumder, D., Bhattacharya, S.K., Ali, M.: Synthesis and characterization of biopolymer based hybrid hydrogel nanocomposite and study of their electrochemical efficacy. Int. J. Biol. Macromol. 123, 228–238 (2018)

    Article  Google Scholar 

  33. Gubin, S.P.: What is nanoparticle? Trend of development of Nanochemistry and nanotechnology. Ross Khim Zh 44, 23–31 (2000)

    Google Scholar 

  34. Henrique, P., Camargo, C., Gundappa, K., Satyanarayana, W.F.: Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12, 1–39 (2009)

    Google Scholar 

  35. Bordes, P., Pollet, E., Avérous, L.: Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog. Polym. Sci. 34, 125–155 (2009)

    Article  Google Scholar 

  36. Hussain, F., Hojjati, M., Okamota, M., Gorga, R.E.: Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40, 1511–1575 (2006)

    Article  Google Scholar 

  37. Baskaran, K., Ali, M., Gingrich, K., Lyn Porter, D., Chong, S., Riley, B.J., Peak, C.W., Naleway, S.E., Zharov, I., Carlson, K.: Sol-gel derived silica: A review of polymer-tailored properties for energy and environmental applications. Microporous Mesoporous Mater. 336, 111874 (2022)

    Google Scholar 

  38. Guo, X.H., Zhang, Q., Ding, X., Shen, Q., Wu, C., Zhang, L., Yang, H.: Synthesis and application of several sol–gel-derived materials via sol–gel process combining with other technologies: a review. J. Sol-Gel Sci. Technol. 79, 328–358 (2016)

    Google Scholar 

  39. Thomas, M., Naikoo, G.A., Sheikh, M.U.D., Bano, M., Khan, F.: Effective photocatalytic degradation of Congo red dye using alginate/carboxymethyl cellulose/TiO2nanocomposite hydrogel under direct sunlight irradiation. J. Photochem. Photobiol. A Chem. 327, 33–43 (2016)

    Article  Google Scholar 

  40. Montaser, A.S., Wassel, A.R., Al-Shaye’a, O.N.: Synthesis, characterization and antimicrobial activity of Schiff bases from chitosan and salicylaldehyde/TiO2 nanocomposite membrane. Int. J. Biol. Macromol. 124, 802–809 (2019)

    Article  Google Scholar 

  41. Mouritz, A.P., Gibson, A.G.: Fire properties of polymer composite materials 143 (2006) Springer Netherlands, 401

    Google Scholar 

  42. McNally, T., Potschke, P., Halley, P., Murphy, M., Martin, D., Belled, S.E.J., Brennane, P.G., Beinf, D., Lemoineg, P., Quinng, J.P.:Polymer 46, 8222–8232 (2005)

    Google Scholar 

  43. Aji, I.S., Zainudin, E.S., Abdan, K., Sapuan, S.M.: J. Compos. Mater. 47(8), 979–990 (2013)

    Google Scholar 

  44. George, J., Bhagawan, S.S., Thomas, S.: Compos. Interf. 5(3), 201–223 (1997)

    Google Scholar 

  45. Mark, J.E.: Ceramic reinforced polymers and polymer-modified ceramics. Polym. Eng. Sci. 36, 2905±2920 (1996)

    Google Scholar 

  46. Reynaud, E., Gauthier, C., Perez, J.: Nanophases in polymers, Rev. Metall./Cah. Inf. Tech. 96, 169–176 (1999)

    Google Scholar 

  47. Lerner, M., Oriakhi, C.: In: Goldstein, A. (ed.) Handbook of Nanophase Materials, pp. 1–199. Marcel Dekker, New York (1997)

    Google Scholar 

  48. Demir, K.D., Tasdelen, M.A., Uyar, T., Kawaguchi, A.W., Sudo, A., Endo, T., Yagci, Y.: Synthesis of polybenzoxazine/clay nanocomposites by in situ thermal ring-opening polymerization using intercalated monomer. J. Polym. Sci. Part A: Polym. Chem. 19, 4213–4220 (2011)

    Article  Google Scholar 

  49. Dizman, C., Ates, S., Uyar, T., Tasdelen, M.A., Torun, L., Yagci, Y.: Polysulfone/clay nanocomposites by in-situ photoinduced crosslinking polymerization. Macromol. Mater. Eng. 296, 1101–1106 (2011)

    Article  Google Scholar 

  50. Sarde, B., Patil, Y.D.: Recent research status on polymer composite used in concrete-an overview. Mater Today: Proc. 18, 3780–3790 (2019)

    Google Scholar 

  51. Hsissou, R., Berradi, M., El Bouchti, M., El Bachiri, A., El Harfi, A.: Synthesis characterization rheological and morphological study of a new epoxy resin pentaglycidyl ether pentaphenoxy of phosphorus and their composite (PGEPPP/MDA/PN). Polym Bull. 76, 4859–4878 (2019)

    Google Scholar 

  52. Oladele, I.O., Omotosho, T.F., Adediran, A.A.: Polymer-based composites: An indispensable material for present and future applications. Int. J. Polym. Sci. 56, 1–12 (2020)

    Article  Google Scholar 

  53. Neser, G.: Polymer-based composites in marine use: History and future trends. Procedia Eng. 194, 19–24 (2016)

    Article  Google Scholar 

  54. Agbabiaka, O.G., Oladele, I.O., Akinwekomi, A.D., Adediran, A.A., Balogun, A.O., Olasunkanmi, O.G., Olayanju, T.M.A.: Effect of calcination temperature on hydroxyapatite developed from waste poultry eggshell. Sci. Africa 8, 1–12 (2020)

    Google Scholar 

  55. El-Aouni, N., Hsissou, R., Azzaoui, J.E., Bouchti, M.E., Elharfi, A.: Synthesis rheological and thermal studies of epoxy polymer and its composite. Chem. Data Collect 30, 100584 (2020)

    Article  Google Scholar 

  56. Yahaya, R., Sapuan, S., Jawaid, M., Leman, Z., Zainudin, E.: Mechanical performance of woven kenaf-Kevlar hybrid composites. J. Reinf. Plast. Compos. 33, 2242–2254 (2014)

    Google Scholar 

  57. Valino, A.D., Dizon, J.R.C., Espera, A.H., Chen, Q., Messman, J., Advincula, R.C.: Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci. 98, Article 101162 (2019)

    Google Scholar 

  58. Hsissou, R., Bekhta, A., Dagdag, O., El Bachiri, A., Rafik, M., Elharfi, A.: Rheological properties of composite polymers and hybrid nanocomposites. Heliyon 6, e04187 (2020)

    Article  Google Scholar 

  59. Rbaa, M., Benhiba, F., Hssisou, R., Lakhrissi, Y., Lakhrissi, B., Touhami, M.E., et al.: Green synthesis of novel carbohydrate polymer chitosan oligosaccharide grafted on d-glucose derivative as bio-based corrosion inhibitor. J. Mol. Liq. 322, Article 114541 (2021)

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank to host Institute for providing the digital library facility for collecting relevant data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Parida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parida, S.K., Kullu, S., Hota, S., Mishra, S. (2024). Synthesis and Processing Techniques of Polymer Composites. In: Moharana, S., Sahu, B.B., Nayak, A.K., Tiwari, S.K. (eds) Polymer Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-2075-0_2

Download citation

Publish with us

Policies and ethics

Navigation