Part of the book series: Algorithms for Intelligent Systems ((AIS))

  • 16 Accesses

Abstract

In addressing hazy conditions, techniques for enhancing image quality predominantly center on estimating the transmission map to restore a haze-free image. However, the conventional transmission map estimation function, based on the atmospheric scattering model, tends to suffer from issues such as over-saturation and over-dehazing. This is primarily attributed to its limited variability with respect to the scene depth. This chapter introduces an approach by presenting a modified transmission map estimation function. This function incorporates a saturation component as an additional haze-relevant feature. The inclusion of this saturation component aims to mitigate problems associated with over-saturation and over-dehazing, thereby enhancing the effectiveness of image quality improvement techniques in hazy conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dua H, Sharma T, Agrawal P, Verma NK (2017) An efficient algorithm for image haze removal in outdoor environment. In: 2017 international conference on computational intelligence: theories, applications and future directions (ICCI-2017), Springer, IIT Kanpur, India, vol II, Dec 6-8, pp 319–331. https://doi.org/10.1007/978-981-13-1135-2_25

  2. Sinha A, Sharma T, Agrawal P, Verma NK (2021) Modified transmission map estimation with gradient domain guided image filtering for single image dehazing. Aerospace and Defence Related Mechanisms (ARMS 2021), Pune, pp 567–575 (Accepted)

    Google Scholar 

  3. Agrawal I, Sharma T, Verma NK (2020) Low-light image restoration using dehazing-based inverted illumination map enhancement. Applied mathematics and computational intelligence, ICAMCI-2020. Springer Proceedings in mathematics & statistics, Tripura, India, Dec. 23–24, pp 135–145. https://doi.org/10.1007/978-981-19-8194-4_12

  4. Nalla BT, Sharma T, Verma NK, Sahoo SR (2018) Image dehazing for object recognition using faster RCNN. In: 2018 international joint conference on neural networks (IJCNN), Rio de Janeiro, Brazil, July 8-13, 2018, pp 1–7. https://doi.org/10.1109/IJCNN.2018.8489280

  5. Sharma T, Nalla BT, Verma NK, Vasikarla S (2022) FR-HDNet: faster RCNN based haze detection network for image dehazing. In: IEEE applied imagery pattern recognition workshop (AIPR). Washington, DC, USA, Oct. 11–13 (2022), pp 1–8. https://doi.org/10.1109/AIPR57179.2022.10092202

  6. Sharma T, Shah T, Verma NK, Vasikarla S (2020) A review on image dehazing algorithms for vision based applications in outdoor environment. In: IEEE applied imagery pattern recognition workshop (AIPR). Washington, DC, USA, Oct. 13–15(2020), pp 1–13. https://doi.org/10.1109/AIPR50011.2020.9425261

  7. Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vision 48(3):233–254. https://doi.org/10.1023/A:1016328200723

    Article  Google Scholar 

  8. He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353. https://doi.org/10.1109/TPAMI.2010.168

    Article  Google Scholar 

  9. Bhola A, Sharma T, Verma NK (2021) DCNet: dark channel NETwork for single image dehazing. Machine vision and applications, vol 32, Issue 62. Springer. https://doi.org/10.1007/s00138-021-01173-x

  10. Scharstein D, Szeliski R (2003) High-accuracy stereo depth maps using structured light. In: IEEE conference on computer vision and pattern recognition (CVPR), Madison, WI, USA, USA, vol 1, pp 195–202. https://doi.org/10.1109/CVPR.2003.1211354

  11. Scharstein D, Pal C (2007) Learning conditional random fields for stereo. In: IEEE conference on computer vision and pattern recognition (CVPR), Minneapolis, MN, USA. https://doi.org/10.1109/CVPR.2007.383191

  12. Hirschmüller H, Scharstein D (2007) Evaluation of cost functions for stereo matching. In: IEEE conference on computer vision and pattern recognition (CVPR), Minneapolis, MN. https://doi.org/10.1109/CVPR.2007.383248

  13. Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing. Prentice-Hall, USA, Upper Saddle River, NJ. . 8131726959, 9788131726952

    Google Scholar 

  14. Li B, Ren W, Fu D, Tao D, Feng D, Zeng W, Wang Z (2019) Benchmarking single-image dehazing and beyond. IEEE Trans Image Process 28(1):492–505. https://doi.org/10.1109/TIP.2018.2867951

    Article  MathSciNet  Google Scholar 

  15. Wang A, Wang W, Liu J, Gu N (2019) AIPNet: image-to-image single image dehazing with atmospheric illumination prior. IEEE Trans. Image Process 28(1):381–393. https://doi.org/10.1109/TIP.2018.2868567

    Article  MathSciNet  Google Scholar 

  16. Zhu Q, Mai J, Shao L (2015) A fast single image haze removal algorithm using color attenuation prior. IEEE Trans Image Process 24(11):3522–3533. https://doi.org/10.1109/TIP.2015.2446191

    Article  MathSciNet  Google Scholar 

  17. Zuiderveld K (1994) Contrast limited adaptive histogram equalization, Graphics Gems IV. ISBN: 0-12-336155-9

    Google Scholar 

  18. Meng G, Wang Y, Duan J, **ang S, Pan C (2013) Efficient image dehazing with boundary constraint and contextual regularization. In: IEEE international conference on computer vision (ICCV), Sydney, NSW, Australia, Dec. 1–8, pp 617–624. https://doi.org/10.1109/ICCV.2013.82

  19. Cai B, Xu X, Jia K, Qing C, Tao D (2016) DehazeNet: an end-to-end system for single image haze removal. IEEE Trans Image Process 25(11):5187–5198. https://doi.org/10.1109/TIP.2016.2598681

    Article  MathSciNet  Google Scholar 

  20. Liu Z, **ao B, Alrabeiah M, Wang K, Chen J (2019) Single image dehazing with a generic model-agnostic convolutional neural network. IEEE Signal Process Lett 26(6):833–837. https://doi.org/10.1109/LSP.2019.2910403

    Article  Google Scholar 

  21. Salomon D (2004) Data compression: the complete reference. Springer Sci Bus Media. https://doi.org/10.1007/978-1-84628-603-2

    Article  Google Scholar 

  22. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  23. Sharma T, Agrawal I, Verma NK (2019) Transmission map estimation function to prevent over-saturation in single image dehazing. In: International conference on deep learning, artificial intelligence and robotics (ICDLAIR 2019), Malaviya National Institute of Technology (MNIT), Jaipur, India, Dec. 7–8, pp 144–152. https://doi.org/10.1007/978-3-030-67187-7_16

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, T., Verma, N.K. (2024). Modified Transmission Map Estimation Function. In: Artificial Intelligent Algorithms for Image Dehazing and Non-Uniform Illumination Enhancement. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-97-2011-8_2

Download citation

Publish with us

Policies and ethics

Navigation