Olefin-Accelerated Solid-State C–N Cross-Coupling Using Mechanochemistry

  • Chapter
  • First Online:
Palladium-Catalyzed Mechanochemical Cross-Coupling Reactions

Part of the book series: Springer Theses ((Springer Theses))

  • 12 Accesses

Abstract

Palladium-catalyzed cross-coupling reactions are one of the most powerful and versatile methods to synthesize a wide range of complex functionalized molecules. However, the development of solid-state cross-coupling reactions remains extremely limited. Here, the author reported a rational strategy that provides a general entry to palladium-catalyzed Buchwald-Hartwig cross-coupling reactions in the solid state. The key finding of this study is that olefin additives can act as efficient molecular dispersants for the palladium-based catalyst in solid-state media to facilitate the challenging solid-state cross-coupling. Beyond the immediate utility of this protocol, this strategy could inspire the development of industrially attractive solvent-free palladium-catalyzed cross-coupling processes for other valuable synthetic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Notes

  1. Constable DJC, Jimenez-Gonzalez C, Henderson RK (2007) Perspective on solvent use in the pharmaceutical industry. Org Process Res Dev 11:133–137

    Article  CAS  Google Scholar 

  2. Clark JH, Tavener SJ (2007) Alternative solvents: shades of green. Org Process Res Dev 11:149–155

    Article  CAS  Google Scholar 

  3. DeSimone JM (2002) Practical approaches to green solvents. Science 297:799–803

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka K (2009) Solvent-free organic synthesis. Wiley-VCH

    Google Scholar 

  5. Toda F (2004) Organic solid-state reactions. Springer

    Google Scholar 

  6. Toda F (1995) Solid-state organic chemistry: efficient reactions, remarkable yields, and stereoselectivity. Acc Chem Res 28:480–486

    Article  CAS  Google Scholar 

  7. Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100:1025–1074

    Article  CAS  PubMed  Google Scholar 

  8. Hernández J, Macdonald NA, Mottillo C, Butler IS, Friščić T (2014) A mechanochemical strategy for oxidative addition: Remarkable yields and stereoselectivity in the halogenation of organometallic Re(I) complexes. Green Chem 16:1087–1092

    Article  Google Scholar 

  9. Belenguer AM, Friščić T, Day GM, Sanders JMK (2011) Solid-state dynamic combinatorial chemistry: reversibility and thermodynamic product selection in covalent mechanosynthesis. Chem Sci 2:696–700

    Article  CAS  Google Scholar 

  10. Shi YX, Xu K, Clegg JK, Ganguly R, Hirao H, Friščić T (2016) The first synthesis of the sterically encumbered adamantoid phosphazane P4(NtBu)6: enabled by mechanochemistry. Angew Chem Int Ed 55:12736–12740

    Google Scholar 

  11. Haley RA, Zeller AR, Krause JA, Guan H, Friščić T (2016) Nickel catalysis in a high speed ball mill: a recyclable mechanochemical method for producing substituted cyclooctatetracene compounds. ACS Sustain Chem Eng 4:2464–2469

    Article  CAS  Google Scholar 

  12. Jia K–Y, Yu J–B, Jiang Z–J, Su W–K (2016) Mechanochemically activated oxidative coupling of indoles with acylates through C-H activation: synthesis of 3-vinylindoles and β,β-diindolyl propionates and study of the mechanism. J Org Chem 81:6049–6055

    Google Scholar 

  13. Strukil V, Bracin D, Magdysyuk OV, Dinnebier RE, Friščić T (2015) Trap** reactive intermediates by mechanochemistry: Elusive aryl N-thiocarbomoylbenzotriazoles as bench-stable reagents. Angew Chem Int Ed 54:8440–8443

    Google Scholar 

  14. Wang G-W, Komatsu K, Murata Y, Shiro M (1997) Synthesis and X-ray structure of dumb-bell-shaped C120. Nature 387:583–586

    Article  CAS  Google Scholar 

  15. Komatsu K, Wang G-W, Murata Y, Tanaka T, Fujikawa K (1998) Mechanochemical synthesis and characterization of the fullerene dimer C120. J Org Chem 63:9358–9366

    Article  CAS  Google Scholar 

  16. Su Y–T, Wang G–W (2013) FeCl3-mediated cyclization of [60]fullerene with N-benzhydrylsulfonamides under high speed vibration milling conditions. Org Lett 15:3408–3411

    Google Scholar 

  17. Tan D, Mottillo C, Katsenis AD, Strukil V, Friščić T (2014) Development of C–N coupling using mechanochemistry: Catalytic coupling of arylsulfonamides and carbodiimides. Angew Chem Int Ed 53:9321–9324

    Google Scholar 

  18. Yu J–B, Zhang Y, Jiang Z–J, Su W–K (2016) Mechanochemically induced Fe(III) catalysis at room temperature: Solvent-free cross-dehydrogenative coupling of 3-benzylic indoles with methylenes/indoles. J Org Chem 81:11514–11520

    Google Scholar 

  19. Rightmire NR, Hanusa TP, Rheingold AL (2014) Mechanochemical synthesis of [1,3-(Me3Si)2C3H3]3(Al, Sc), a base-free tris(allyl)aluminum complex and its scandium analogue. Organometallics 33:5952–5955

    Article  CAS  Google Scholar 

  20. Zhao Y, Rocha SV, Swager TM (2016) Mechanochemical synthesis of extended iptycenes. J Am Chem Soc 138:13834–13837

    Article  CAS  PubMed  Google Scholar 

  21. Johansson Seehurn CCC, Kitching MO, Colacot TJ, Snieckus V (2012) Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel prize. Angew Chem Int Ed 51:5062–5085

    Google Scholar 

  22. Molnár Á (2013) Palladium-catalyzed coupling reactions: practical aspects and future developments. Wiley-VCH, Weinheim

    Book  Google Scholar 

  23. Meijere A, Diederich F (2008) Metal-catalyzed cross-coupling reactions, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  24. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  25. Chartoire A, Boreux A, Martin AR, Nolan SP (2013) Solvent-free aryl amination catalyzed by [Pd(NHC)] complexes. RSC Adv 3:3840–3843

    Article  CAS  Google Scholar 

  26. Gajare AS, Toyota K, Yoshifuji M, Ozawa F (2004) Solvent-free amination reactions of aryl bromides at room temperature catalyzed by a (π-allyl)palladium complex bearing a diphosphinidenecyclobutene ligand. J Org Chem 69:6504–6506

    Article  CAS  PubMed  Google Scholar 

  27. Topchiy MA, Asachenko AF, Nechaev MS (2014) Solvent-free Buchwald-Hartwig reaction of aryl and heteroaryl halides with secondary amines. Eur J Org Chem, 3319–3322

    Google Scholar 

  28. Melucci MM, Barbarella G, Sotgiu G (2002) Solvent-free, microwave-assisted synthesis of thiophene oligomers via Suzuki coupling. J Org Chem 67:8877–8884

    Article  CAS  PubMed  Google Scholar 

  29. Mandai K, Korenaga T, Ema T, Sakai T, Furutani M, Hashimoto H, Takada J (2012) Biogenous iron oxide-immobilized palladium catalyst for the solvent-free Suzuki-Miyaura coupling reaction. Tetrahedron Let 53:329–332

    Article  CAS  Google Scholar 

  30. Bandgar BP, Patil AV (2005) A rapid, solvent-free, ligandless and mild method for preparing aromatic ketones from acyl chlorides and arylboronic acids via a Suzuki-Miyaura type of coupling reaction. Tetrahedron Let 46:7627–7630

    Article  CAS  Google Scholar 

  31. Basu B, Das P, Bhuiyan MH, Jha S (2003) Microwave-assisted Suzuki coupling on a KF-alumina surface: Synthesis of polyaryls. Tetrahedron Lett 44:3817–3820

    Article  CAS  Google Scholar 

  32. Liang Y, **e Y-X, Li J-H (2006) Modified palladium-catalyzed Sonogashira cross-coupling reactions under copper-, amine-, and solvent-free conditions. J Org Chem 71:379–381

    Article  CAS  PubMed  Google Scholar 

  33. Stolle A, Szuppa T, Leonhardt ES, Ondruschka B (2011) Ball milling in organic synthesis: solutions and challenges. Chem Soc Rev 40:2317–2329

    Article  CAS  PubMed  Google Scholar 

  34. Hernández JG, Bolm C (2017) Altering product selectivity by mechanochemistry. J Org Chem 82:4007–4019

    Article  PubMed  Google Scholar 

  35. Do J-L, Friščić T (2017) Mechanochemistry: a force of synthesis. ACS Cent Sci 3:13–19

    Article  CAS  PubMed  Google Scholar 

  36. James SL et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447

    Article  CAS  PubMed  Google Scholar 

  37. Bowmaker GA (2013) Solvent-assisted mechanochemistry. Chem Commun 49:334–348

    Article  CAS  Google Scholar 

  38. Wang G-W (2013) Mechanochemical organic synthesis. Chem Soc Rev 42:7668–7700

    Article  CAS  PubMed  Google Scholar 

  39. Howard JL, Cao Q, Browne DL (2018) Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem Sci 9:3080–3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodríguez B, Bruckmann A, Rantanen T, Bolm C (2007) Solvent-free carbon-carbon bond formations in ball mills. Adv Synth Catal 349:2213–2233

    Article  Google Scholar 

  41. Chen L, Regan M, Mack J (2016) The choice is yours: Using liquid-assisted grinding to choose between products in the palladium-catalyzed dimerization of terminal alkynes. ACS Catal 6:868–872

    Article  CAS  Google Scholar 

  42. Cravotto G, Garella D, Tagliapietra S, Stolle A, Schüßler S, Leonhardt SES, Ondruschka B (2012) Suzuki cross-coupling of (hetero)aryl chlorides in the solid-state. New J Chem 36:1304–1307

    Article  CAS  Google Scholar 

  43. Thorwirth R, Stolle A, Ondruschka B (2010) Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill. Green Chem 12:985–991

    Article  CAS  Google Scholar 

  44. Fulmer DA, Shearouse WC, Medonza ST, Mack J (2009) Solvent-free Sonogashira coupling reaction via high speed ball milling. Green Chem 11:1821–1825

    Article  CAS  Google Scholar 

  45. Declerck V, Colacino E, Bantreil X, Martinez J, Lamaty F (2012) Poly(ethylene glycol) as reaction medium for mild Mizoroki-Heck reaction in a ball mill. Chem Commun 48:11778–11780

    Article  CAS  Google Scholar 

  46. Zhu X, Liu J, Chen T, Su W (2012) Mechanically activated synthesis of (E)-stilbene derivatives by high-speed ball milling. Appl Organometal Chem 26:145–147

    Article  CAS  Google Scholar 

  47. Tullberg E, Schacher F, Peters D, Frejd T (2006) Solvent-free Heck-Jeffery reactions under ball-milling conditions applied to the synthesis of unnatural amino acids precursors and indoles. Synthesis 7:1183–1189

    Google Scholar 

  48. Tulberg E, Peters D, Frejd T (2004) The Heck reaction under ball-milling conditions. J Organomet Chem 689:3778–3781

    Article  Google Scholar 

  49. Schneider F, Ondruschka B (2008) Mechanochemical solid-state Suzuki reactions using an in situ generated base. Chemsuschem 1:622–625

    Article  CAS  PubMed  Google Scholar 

  50. Schneider F, Stolle A, Ondruschka B, Hopf H (2009) The Suzuki-Miyaura reaction under mechanochemical conditions. Org Process Res Dev 13:44–48

    Article  CAS  Google Scholar 

  51. Shao Q–L, Jiang Z–J, Su W–K (2018) Solvent-free mechanochemical Buchwald-Hartwig amination of aryl chlorides without inert gas protection. Tetrahedron Lett 59:2277–2280

    Google Scholar 

  52. Klingensmith LM, Leadbeater NE (2003) Ligand-free palladium catalysis of aryl coupling reactions facilitated by grinding. Tetrahedron Lett 44:765–768

    Article  CAS  Google Scholar 

  53. Jiang Z–J, Li Z–H, Yu J–B, Su W–K (2016) Liquid-assisted grinding accelerating: Suzuki-Miyaura reaction of aryl chlorides under high-speed ball milling conditions. J Org Chem 81:10049–10055

    Google Scholar 

  54. Ruiz-Castillo P, Buchwald SL (2016) Applications of palladium-catalyzed C-N cross-coupling reactions. Chem Rev 116:12564–12649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ning Z, Tian H (2009) Triarylamine: A promising core unit for efficient photovoltaic materials. Chem Commun, 5483–5495

    Google Scholar 

  56. Li L–L, Diau EW–G (2013) Porphyrin-sensitized solar cells. Chem Soc Rev 42:291–304

    Google Scholar 

  57. Jeon NJ, Lee J, Noh JH, Nazeeruddin MK, Grätzel M, Seok S (2013) Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J Am Chem Soc 135:19087–19090

    Article  CAS  PubMed  Google Scholar 

  58. Hartwig JF, Kawatsura M, Hauck SI, Shaughnessy KH, Alcazar-Roman LM (1999) Room-temperature palladium-catalyzed amination of aryl bromides and chlorides and extended scope of aromatic C-N bond formation with a commercial ligand. J Org Chem 64:5575–5580

    Article  CAS  PubMed  Google Scholar 

  59. Old DW, Wolfe JP, Buchwald SL (1998) A highly active catalyst for palladium-catalyzed cross-coupling reactions: Room-temperature Suzuki couplings and amination of unactivated aryl chlorides. J Am Chem Soc 120:9722–9723

    Article  CAS  Google Scholar 

  60. Fairlamb IJS (2008) π-Acidic alkene ligand effects in Pd-catalyzed cross-coupling processes: Exploiting the interaction of dibenzylidene acetone (dba) and related ligands with Pd(0) and Pd(II). Org Biomol Chem 6:3645–3656

    Article  CAS  PubMed  Google Scholar 

  61. Hu J, Liu Y (2005) Pd Nanoparticle aging and its implications in the Suzuki cross-coupling reaction. Langmuir 21:2121–2123

    Article  CAS  PubMed  Google Scholar 

  62. Yurino T, Ueda Y, Shimizu Y, Tanaka S, Nishiyama H, Tsurugi H, Sato K, Mashima K (2015) Salt-free reduction of nonprecious transition-metal compounds: generation of amorphous Ni nanoparticles for catalytic C–C bond formation. Angew Chem Int Ed 127:14645–14649

    Google Scholar 

  63. Yamashita M, Hartwig JF (2004) Synthesis, structure, and reductive elimination chemistry of three-coordinate arylpalladium amido complexes. J Am Chem Soc 126:5344–5345

    Article  CAS  PubMed  Google Scholar 

  64. Chan CYK, Lam JWY, Zhao Z, Chen S, Lu P, Sung HHY, Kwok HS, Ma Y, Williams ID, Tang BZ (2014) Aggregation-induced emission, mechanochromism and blue electroluminescence of carbazole and triphenylamine-substituted ethenes. J Mater Chem 2:4320–4327

    CAS  Google Scholar 

  65. Li S–Y, Sun Z–B, Zhao C–H (2017) Charge-transfer emitting triarylborane π-electron systems. Inorg Chem 56:8705–8717

    Google Scholar 

  66. Turkoglu G, Cinar ME, Ozturk T (2017) Triarylborane-based materials for OLED applications. Molecules 22:1522–1546

    Article  PubMed  PubMed Central  Google Scholar 

  67. It should also be noted that the temperature inside the milling jar after the grinding at 30 Hz for 60 min was about 30 °C, which was confirmed by thermography, indicating that this reaction proceeded at around room temperature (See the Supporting Information for details)

    Google Scholar 

  68. Hutchings BP, Crawford DE, Gao L, Hu P, James SL (2017) Feedback kinetics in mechanochemistry: the importance of cohesive states. Angew Chem Int Ed 129:15454–15458

    Article  Google Scholar 

References and Notes

  1. Kübel C, Chen S-L, Müllen K (1998) Macromolecules 31:6014–6021

    Article  Google Scholar 

  2. Abada Z, Ferrié L, Akagah B, Lormier AT, Figadère B (2011) Tetrahedron Lett 52:3175–3178

    Article  CAS  Google Scholar 

  3. Abada Z, Ferrié L, Akagah B, Lormier AT, Figadère B (2012) Tetrahedron Lett 53:6961–6964

    Article  CAS  Google Scholar 

  4. Jia W-L, Bai D-R, McCormick T, Liu Q-D, Motala M, Wang R-Y, Seward C, Tao Y, Wang S (2004) Chem Eur J 10:994–1006

    Article  CAS  PubMed  Google Scholar 

  5. Topchiy MA, Asachenko AF, Nechaev MS (2004) Eur J Org Chem 16:994–1006

    Google Scholar 

  6. Hu J-Y, Feng X, Seto N, Do J-H, Zeng X, Tao Z, Yamato T (2013) J Mol Struct 1035:19–26

    Article  CAS  Google Scholar 

  7. Nie H-J, Yao C-J, Shao J-Y, Yao J, Zhong Y-W (2014) Chem Eur J 20:17454–17465

    Article  CAS  PubMed  Google Scholar 

  8. Tadaoka H, Yamakawa T (2012) Tetrahedron Lett 53:5531–5534

    Article  CAS  Google Scholar 

  9. **e C, Zhang Y (2007) Org Lett 9:781–784

    Article  CAS  PubMed  Google Scholar 

  10. Monguchi Y, Kitamoto K, Ikawa T, Maegawa T, Sajiki H (2008) Adv Synth Catal 350:2767–2777

    Article  CAS  Google Scholar 

  11. Yang J-S, Chiou S-Y, Liau K-L (2002) J Am Chem Soc 124:2518–2527

    Article  CAS  PubMed  Google Scholar 

  12. Deol H, Pramanik S, Kumar M, Khan I, Bhalla V (2016) ACS Catal 6:3771–3783

    Article  CAS  Google Scholar 

  13. Hartwig JF, Kawatsura M, Hauck S, Sheila I, Shaughnessy KH, Alcazar-Roman LM (1999) J Org Chem 64:5575–5580

    Article  CAS  PubMed  Google Scholar 

  14. Chan CYK, Lam JWY, Zhao Z, Chen S, Lu P, Sung HHY, Kwok HS, Ma Y, Williams ID, Tang BZ (2014) J Mater Chem 2:4320–4327

    CAS  Google Scholar 

  15. Tabet A, Hartmann H (2005) Synthesis 4:610–616

    Google Scholar 

  16. Jeon NJ, Lee J, Noh JH, Nazeeruddin MK, Grätzel M, Seok S (2013) J Am Chem Soc 135:19087–19090

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seo, T. (2024). Olefin-Accelerated Solid-State C–N Cross-Coupling Using Mechanochemistry. In: Palladium-Catalyzed Mechanochemical Cross-Coupling Reactions. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-97-1991-4_2

Download citation

Publish with us

Policies and ethics

Navigation