Renewable and Commercially Viable Porous Material-Supported Heterojunction Nanocomposites as UV-Visible Light-Responsive Photocatalysts for Environmental and Energy-Related Applications

  • Chapter
  • First Online:
Photocatalysis for Energy and Environmental Applications

Part of the book series: Green Energy and Technology ((GREEN))

  • 50 Accesses

Abstract

The chapter deals with porous material-based nanocomposites as visible light active photocatalyst monoliths to remove lingering contaminants from the environment. Porous materials with well-defined, tailor-made structural and surface properties offer numerous applications related to catalysis, adsorption, separation, biomedicines, energy technologies, etc. In heterogeneous photocatalysis, porous materials such as zeolites, porous metal oxides, metal-organic frameworks, and porous polymer monoliths supported by nanocomposites contribute intensely to environmental and energy-related applications. Porous photocatalysts with a hierarchical stricture show great promise due to their distinct features compared to solid structures. These advantages encompass improved scattering and adsorption of light, abundance reaction sites, large specific surface areas, enhanced facilitation of mass and charge transfer, etc. These porous materials are efficient for hosting photoactive materials and are versatile owing to their lower production cost, high-performance efficiency, easy modification, and renewability. The chapter discusses the advances in heterogeneous photocatalysis using hierarchically porous materials as photocatalytic supports and their prospects in environmental decontamination and energy-related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Martín de Vidales, R. Prieto, G. Galán-Lucarelli, E. Atanes-Sánchez, F. Fernández-Martínez, Removal of contaminants of emerging concern by photocatalysis with a highly ordered TiO2 nanotubular array catalyst. Catal. Today 413–415, 1–8 (2023). https://doi.org/10.1016/j.cattod.2023.01.002

    Article  Google Scholar 

  2. M. Guo, Z. Zhou, S. Yan, P. Zhou, F. Miao, S. Liang, J. Wang, X. Cui, Bi2WO6–BiOCl heterostructure with enhanced photocatalytic activity for efficient degradation of oxytetracycline. Sci. Rep. 10, 1–13 (2020). https://doi.org/10.1038/s41598-020-75003-x

    Article  Google Scholar 

  3. S.P. Tripathy, S. Subudhi, A. Ray, P. Behera, A. Bhaumik, K. Parida, Mixed-valence bimetallic Ce/Zr MOF-based nanoarchitecture: a visible-light-active photocatalyst for ciprofloxacin degradation and hydrogen evolution. Langmuir 38, 1766–1780 (2022). https://doi.org/10.1021/acs.langmuir.1c02873

    Article  Google Scholar 

  4. M.L. Xu, X.J. Jiang, J.R. Li, F.J. Wang, K. Li, X. Cheng, Self-assembly of a 3D hollow BiOBr@Bi-MOF heterostructure with enhanced photocatalytic degradation of dyes. ACS Appl. Mater. Interfaces 13, 56171–56180 (2021). https://doi.org/10.1021/acsami.1c16612

    Article  Google Scholar 

  5. F.K. Naqvi, M. Faraz, S. Beg, N. Khare, Synthesis and phase transformation studies of dysprosium-doped Bi4V2O11 nanoparticles and their application in visible light photocatalytic degradation of tetracycline drug. ACS Omega 3, 11300–11306 (2018). https://doi.org/10.1021/acsomega.8b01012

    Article  Google Scholar 

  6. H. Santoke, W. Song, W.J. Cooper, J. Greaves, G.E. Miller, Free-radical-induced oxidative and reductive degradation of fluoroquinolone pharmaceuticals: kinetic studies and degradation mechanism. J. Phys. Chem. A 113, 7846–7851 (2009). https://doi.org/10.1021/jp9029453

    Article  Google Scholar 

  7. E. Pierini, G. Famiglini, F. Mangani, A. Cappiello, Fate of enrofloxacin in swine sewage. J. Agric. Food Chem. 52, 3473–3477 (2004). https://doi.org/10.1021/jf049865c

    Article  Google Scholar 

  8. S.K. Fanourakis, J. Peña-Bahamonde, P.C. Bandara, D.F. Rodrigues, Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse. NPJ Clean Water 3 (2020). https://doi.org/10.1038/s41545-019-0048-8

  9. M. Bodzek, M. Rajca, Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds. Ecol. Chem. Eng. S. 19, 489–512 (2012). https://doi.org/10.2478/v10216-011-0036-5

  10. M. Ren, J. Di, W. Chen, Recent progress and application challenges of wearable supercapacitors. Batteries Supercaps 4(8), 1279–1290 (2021). https://doi.org/10.1002/batt.202000333

    Article  Google Scholar 

  11. B. Zhu, D. Song, T. Jia, W. Sun, D. Wang, L. Wang, J. Guo, L. **, L. Zhang, H. Tao, Effective Visible light-driven photocatalytic degradation of ciprofloxacin over flower-like Fe3O4/Bi2WO6 composites. ACS Omega 6, 1647–1656 (2021). https://doi.org/10.1021/acsomega.0c05616

    Article  Google Scholar 

  12. F. Quddus, A. Shah, F.J. Iftikhar, N.S. Shah, A. Haleem, Environmentally benign nanoparticles for the photocatalytic degradation of pharmaceutical drugs. Catalysts 13, 1–24 (2023). https://doi.org/10.3390/catal13030511

    Article  Google Scholar 

  13. K. Selvakumar, Y. Wang, Y. Lu, B. Tian, Z. Zhang, J. Hu, A. Raja, M. Arunpandian, M. Swaminathan, H. Dai, M. Sui, Single metal atom oxide anchored Fe3O4-ED-rGO for highly efficient photodecomposition of antibiotic residues under visible light illumination. Appl. Catal. B Environ. 300, 120740 (2022). https://doi.org/10.1016/j.apcatb.2021.120740

    Article  Google Scholar 

  14. X. Nie, G. Li, S. Li, Y. Luo, W. Luo, Q. Wan, T. An, Highly efficient adsorption and catalytic degradation of ciprofloxacin by a novel heterogeneous Fenton catalyst of hexapod-like pyrite nanosheets mineral clusters. Appl. Catal. B Environ. 300, 120734 (2022). https://doi.org/10.1016/j.apcatb.2021.120734

    Article  Google Scholar 

  15. R. Abazari, A.R. Mahjoub, Amine-Functionalized Al-MOF#@ yxSm2O3-ZnO: a visible light-driven nanocomposite with excellent photocatalytic activity for the photo-degradation of amoxicillin. Inorg. Chem. 57, 2529–2545 (2018). https://doi.org/10.1021/acs.inorgchem.7b02880

    Article  Google Scholar 

  16. S. Ghasimi, Conjugated porous polymers for visible-light photocatalysis, 157 (2016). https://d-nb.info/1123047847/34

  17. E. Fernandes, P. Mazierski, M. Miodyńska, T. Klimczuk, M. Pawlyta, A. Zaleska-Medynska, R.C. Martins, J. Gomes, Carbon nitride exfoliation for photocatalysis and photocatalytic ozonation over emerging contaminants abatement. J. Environ. Chem. Eng. 11 (2023). https://doi.org/10.1016/j.jece.2023.110554

  18. F.T. Geldasa, M.A. Kebede, M.W. Shura, F.G. Hone, Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: a review. RSC Adv. 13, 18404–18442 (2023). https://doi.org/10.1039/d3ra01505j

    Article  Google Scholar 

  19. N. Mzimela, S. Tichapondwa, E. Chirwa, Visible-light-activated photocatalytic degradation of rhodamine B using WO3 nanoparticles. RSC Adv. 12, 34652–34659 (2022). https://doi.org/10.1039/d2ra06124d

    Article  Google Scholar 

  20. Y. He, L. Yang, F. Zhang, B. Zhang, G. Zou, Tunable electron-injection channels of heterostructured ZnSe@CdTe nanocrystals for surface-chemistry-involved electrochemiluminescence. J. Phys. Chem. Lett. 9, 6089–6095 (2018). https://doi.org/10.1021/acs.jpclett.8b02645

    Article  Google Scholar 

  21. D.A. Reddy, J. Choi, S. Lee, R. Ma, T.K. Kim, Self-assembled macro porous ZnS-graphene aerogels for photocatalytic degradation of contaminants in water. RSC Adv. 5, 18342–18351 (2015). https://doi.org/10.1039/c4ra16494f

    Article  Google Scholar 

  22. D. Wang, T. Kako, J. Ye, New series of solid-solution semiconductors (AgNbO3) 1–x(SrTiO3)x with modulated band structure and enhanced visible-light photocatalytic activity. J. Phys. Chem. C 113, 3785–3792 (2009). https://doi.org/10.1021/jp807393a

    Article  Google Scholar 

  23. M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu, Y. Wang, Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures. ACS Nano 4, 681–688 (2010). https://doi.org/10.1021/nn901119a

    Article  Google Scholar 

  24. C. Kang, K. **ao, Y. Wang, D. Huang, L. Zhu, F. Liu, T. Tian, Synthesis of SrTiO3–TiN nanocomposites with enhanced photocatalytic activity under simulated solar irradiation. Ind. Eng. Chem. Res. 57, 11526–11534 (2018). https://doi.org/10.1021/acs.iecr.8b01203

    Article  Google Scholar 

  25. R. Das, S. Sarkar, S. Chakraborty, H. Choi, C. Bhattacharjee, Remediation of antiseptic components in wastewater by photocatalysis using TiO2 nanoparticles. Ind. Eng. Chem. Res. 53, 3012–3020 (2014). https://doi.org/10.1021/ie403817z

    Article  Google Scholar 

  26. J.A. Nasir, Z.U. Rehman, S.N.A. Shah, A. Khan, I.S. Butler, C.R.A. Catlow, Recent developments and perspectives in CdS-based photocatalysts for water splitting. J. Mater. Chem. A. 8, 20752–20780 (2020). https://doi.org/10.1039/d0ta05834c

    Article  Google Scholar 

  27. W.H. Lin, Y.H. Chiu, P.W. Shao, Y.J. Hsu, Metal-particle-decorated ZnO nanocrystals: photocatalysis and charge dynamics. ACS Appl. Mater. Interfaces 8, 32754–32763 (2016). https://doi.org/10.1021/acsami.6b08132

    Article  Google Scholar 

  28. Y. Mingmongkol, A. Polnok, P. Phuinthiang, D. Channei, K. Ratananikom, A. Nakaruk, W. Khanitchaidecha, Photocatalytic degradation mechanism of the pharmaceutical agent salbutamol using the Mn-doped TiO2 nanoparticles under visible light irradiation. ACS Omega 8, 17254–17263 (2023). https://doi.org/10.1021/acsomega.3c01776

    Article  Google Scholar 

  29. C. Dai, B. Liu, Conjugated polymers for visible-light-driven photocatalysis. Energy Environ. Sci. 13, 24–52 (2020). https://doi.org/10.1039/c9ee01935a

    Article  Google Scholar 

  30. K. Vijayan, S.P. Vijayachamundeeswari, Improving the multifunctional attributes and photocatalytic dye degradation of MB and RhB dye—A comparative scrutiny. Inorg. Chem. Commun. 144, 109940 (2022). https://doi.org/10.1016/j.inoche.2022.109940

    Article  Google Scholar 

  31. M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan, B.L. Su, Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45, 3479–3563 (2016). https://doi.org/10.1039/c6cs00135a

    Article  Google Scholar 

  32. R.A.C. Amoresi, R.C. Oliveira, N.L. Marana, P.B. De Almeida, P.S. Prata, M.A. Zaghete, E. Longo, J.R. Sambrano, A.Z. Simões, CeO2 nanoparticle morphologies and their corresponding crystalline planes for the photocatalytic degradation of organic pollutants. ACS Appl. Nano Mater. 2, 6513–6526 (2019). https://doi.org/10.1021/acsanm.9b01452

    Article  Google Scholar 

  33. A.A. AbdelHamid, A. Mendoza-Garcia, J.Y. Ying, Advances in and prospects of nanomaterials’ morphological control for lithium rechargeable batteries. Nano Energy 93, 106860 (2022). https://doi.org/10.1016/j.nanoen.2021.106860

    Article  Google Scholar 

  34. P. Moroz, A. Boddy, M. Zamkov, Challenges and prospects of photocatalytic applications utilizing semiconductor nanocrystals. Front. Chem. 6, 1–7 (2018). https://doi.org/10.3389/fchem.2018.00353

    Article  Google Scholar 

  35. J. Cai, X. Wu, S. Li, F. Zheng, Synthesis of TiO2@WO3/Au nanocomposite hollow spheres with controllable size and high visible-light-driven photocatalytic activity. ACS Sustain. Chem. Eng. 4, 1581–1590 (2016). https://doi.org/10.1021/acssuschemeng.5b01511

    Article  Google Scholar 

  36. N. Zhang, S. Liu, Y.J. Xu, Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst. Nanoscale 4, 2227–2238 (2012). https://doi.org/10.1039/c2nr00009a

    Article  Google Scholar 

  37. L.S. Gomez-Villalba, C. Salcines, R. Fort, Application of inorganic nanomaterials in cultural heritage conservation, risk of toxicity, and preventive measures. Nanomaterials 13 (2023). https://doi.org/10.3390/nano13091454

  38. P. Samanta, A.V. Desai, S. Let, S.K. Ghosh, Advanced porous materials for sensing, capture and detoxification of organic pollutants toward water remediation. ACS Sustain. Chem. Eng. 7, 7456–7478 (2019). https://doi.org/10.1021/acssuschemeng.9b00155

    Article  Google Scholar 

  39. V. Harish, M.M. Ansari, D. Tewari, M. Gaur, A.B. Yadav, M.L. García-Betancourt, F.M. Abdel-Haleem, M. Bechelany, A. Barhoum, Nanoparticle and nanostructure synthesis and controlled growth methods. Nanomaterials 12, 1–30 (2022). https://doi.org/10.3390/nano12183226

    Article  Google Scholar 

  40. Q. Zhang, E. Uchaker, S.L. Candelaria, G. Cao, Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42, 3127–3171 (2013). https://doi.org/10.1039/c3cs00009e

    Article  Google Scholar 

  41. M.C. Orilall, U. Wiesner, Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells. Chem. Soc. Rev. 40, 520–535 (2011). https://doi.org/10.1039/c0cs00034e

    Article  Google Scholar 

  42. A. Ahmadi, M. Hajilou, S. Zavari, S. Yaghmaei, A comparative review on adsorption and photocatalytic degradation of classified dyes with metal/non-metal-based modification of graphitic carbon nitride nanocomposites: synthesis, mechanism, and affecting parameters. J. Clean. Prod. 382, 134967 (2023). https://doi.org/10.1016/j.jclepro.2022.134967

    Article  Google Scholar 

  43. S. Malato, J. Giménez, I. Oller, A. Agüera, J.A. Sánchez Pérez, Removal and degradation of pharmaceutically active compounds (PhACs) in wastewaters by solar advanced oxidation processes. Handb. Environ. Chem. 108, 299–326 (2021). https://doi.org/10.1007/698_2020_688

  44. Y. Khan, H. Sadia, S.Z. Ali Shah, M.N. Khan, A.A. Shah, N. Ullah, M.F. Ullah, H. Bibi, O.T. Bafakeeh, N. Ben Khedher, S.M. Eldin, B.M. Fadhl, M.I. Khan, Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. Catalysts 12 (2022). https://doi.org/10.3390/catal12111386

  45. A.M. El-Khawaga, A. Zidan, A.I.A.A. El-Mageed, Preparation methods of different nanomaterials for various potential applications: a review. J. Mol. Struct. 1281 (2023). https://doi.org/10.1016/j.molstruc.2023.135148

  46. N. Abid, A.M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imran, J. Haider, M. Khan, Q. Khan, M. Maqbool, Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv. Colloid Interface Sci. 300, 102597 (2022). https://doi.org/10.1016/j.cis.2021.102597

    Article  Google Scholar 

  47. S. Rani, M. Sharma, D. Verma, A. Ghanghass, R. Bhatia, I. Sameera, Two-dimensional transition metal dichalcogenides and their heterostructures: role of process parameters in top-down and bottom-up synthesis approaches. Mater. Sci. Semicond. Process. 139, 106313 (2022). https://doi.org/10.1016/j.mssp.2021.106313

    Article  Google Scholar 

  48. D. Maity, S.R. Sahoo, S. Saha, Synthesis and characterization of nanomaterials for electrochemical sensors. ACS Symp. Ser. 1437, 193–222 (2023). https://doi.org/10.1021/bk-2023-1437.ch009

    Article  Google Scholar 

  49. C.T.J. Ferguson, K.A.I. Zhang, Classical polymers as highly tunable and designable heterogeneous photocatalysts. ACS Catal. 11, 9547–9560 (2021). https://doi.org/10.1021/acscatal.1c02056

    Article  Google Scholar 

  50. Q. Sun, Z. Dai, X. Meng, L. Wang, F.S. **ao, Task-specific design of porous polymer heterogeneous catalysts beyond homogeneous counterparts. ACS Catal. 5, 4556–4567 (2015). https://doi.org/10.1021/acscatal.5b00757

    Article  Google Scholar 

  51. T.X. Wang, H.P. Liang, D.A. Anito, X. Ding, B.H. Han, Emerging applications of porous organic polymers in visible-light photocatalysis. J. Mater. Chem. A 8, 7003–7034 (2020). https://doi.org/10.1039/d0ta00364f

    Article  Google Scholar 

  52. T. Zhang, G. **ng, W. Chen, L. Chen, Porous organic polymers: a promising platform for efficient photocatalysis. Mater. Chem. Front. 4, 332–353 (2020). https://doi.org/10.1039/c9qm00633h

    Article  Google Scholar 

  53. Z. Fu, S. Han, J. Huang, Y.N. Liu, Comparison of hyper-cross-linked polystyrene/polyacryldiethylenetriamine (HCP/PADETA) interpenetrating polymer networks (IPNs) with hyper-cross-linked polystyrene (HCP): structure, adsorption and separation properties. RSC Adv. 6, 32340–32348 (2016). https://doi.org/10.1039/c6ra01932c

    Article  Google Scholar 

  54. S. Fajal, S. Dutta, S.K. Ghosh, Porous organic polymers (POPs) for environmental remediation. Mater. Horizons. (2023). https://doi.org/10.1039/d3mh00672g

    Article  Google Scholar 

  55. D. Taylor, S.J. Dalgarno, Z. Xu, F. Vilela, Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chem. Soc. Rev. 49, 3981–4042 (2020). https://doi.org/10.1039/c9cs00315k

    Article  Google Scholar 

  56. M.Z. Ahmad, R. Castro-Munõz, P.M. Budd, Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. Nanoscale 12, 23333–23370 (2020). https://doi.org/10.1039/d0nr07042d

    Article  Google Scholar 

  57. C.C. Gu, F.H. Xu, W.K. Zhu, R.J. Wu, L. Deng, J. Zou, B.C. Weng, R.L. Zhu, Recent advances on covalent organic frameworks (COFs) as photocatalysts: different strategies for enhancing hydrogen generation. Chem. Commun. 7302–7320 (2023). https://doi.org/10.1039/d3cc01970e

  58. H. Ma, H. Ren, X. Zou, F. Sun, Z. Yan, K. Cai, D. Wang, G. Zhu, Novel lithium-loaded porous aromatic framework for efficient CO2 and H2 uptake. J. Mater. Chem. A. 1, 752–758 (2013). https://doi.org/10.1039/c2ta00616b

    Article  Google Scholar 

  59. B. Dong, Y. Wan, Q. Cheng, H. Zhou, Z. Pan, Construction of novel MoS2@COF-Ph heterojunction photocatalysts for boosted photocatalytic efficiency and hydrogen production performance under sunlight. Environ. Sci NANO 9, 2799–2814 (2022). https://doi.org/10.1039/d2en00278g

    Article  Google Scholar 

  60. M. Nasrollahzadeh, R. Akbari, S. Sakhaei, Z. Nezafat, S. Banazadeh, Y. Orooji, G. Hegde, Polymer supported copper complexes/nanoparticles for treatment of environmental contaminants. J. Mol. Liq. 330, 115668 (2021). https://doi.org/10.1016/j.molliq.2021.115668

    Article  Google Scholar 

  61. C. Li, W. Wang, L. Yan, Y. Wang, M. Jiang, Y. Ding, Phosphonium salt and ZnX2–PPh3 integrated hierarchical POPs: tailorable synthesis and highly efficient cooperative catalysis in CO2 utilization. J. Mater. Chem. A 4, 16017–16027 (2016). https://doi.org/10.1039/c6ta05823j

    Article  Google Scholar 

  62. S. Raja, L.H.C. Mattoso, Functionalized polymer-based composite photocatalysts, 167–188 (2020). https://doi.org/10.1007/978-3-030-15608-4_7

  63. L. Tan, K. Wang, Q. Li, Y. Yang, Y. Liu, B. Tan, Organic porous polymer materials: design, preparation, and applications (2017). https://doi.org/10.1007/978-3-319-57003-7_4

  64. R. Gogoi, S. Dutt, P.F. Siril, Conjugated polymer—Based nanocomposites as photocatalysts (2021). https://doi.org/10.1002/9783527820115.ch8

  65. Q. Sun, B. Aguila, Y. Song, S. Ma, Tailored porous organic polymers for task-specific water purification. Acc. Chem. Res. 53, 812–821 (2020). https://doi.org/10.1021/acs.accounts.0c00007

    Article  Google Scholar 

  66. P. Kaur, J.T. Hupp, S.T. Nguyen, Porous organic polymers in catalysis: opportunities and challenges. ACS Catal. 1, 819–835 (2011). https://doi.org/10.1021/cs200131g

    Article  Google Scholar 

  67. P. Ahuja, S.K. Ujjain, R. Kanojia, P. Attri, Transition metal oxides and their composites for photocatalytic dye degradation. J. Compos. Sci. 5, 1–27 (2021). https://doi.org/10.3390/jcs5030082

    Article  Google Scholar 

  68. N. Sun, C. Wang, H. Wang, X. Gao, J. Jiang, Photonic switching porous organic polymers toward reversible control of heterogeneous photocatalysis. ACS Appl. Mater. Interfaces 12, 56491–56498 (2020). https://doi.org/10.1021/acsami.0c18062

    Article  Google Scholar 

  69. L. Shao, Y. Li, J. Huang, Y.N. Liu, Synthesis of triazine-based porous organic polymers derived n-enriched porous carbons for CO2 capture. Ind. Eng. Chem. Res. 57, 2856–2865 (2018). https://doi.org/10.1021/acs.iecr.7b04533

    Article  Google Scholar 

  70. G. Hu, J. Yang, X. Duan, R. Farnood, C. Yang, J. Yang, W. Liu, Q. Liu, Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications. Chem. Eng. J. 417, 129209 (2021). https://doi.org/10.1016/j.cej.2021.129209

    Article  Google Scholar 

  71. O. Sacco, V. Vaiano, M. Matarangolo, ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis. Sep. Purif. Technol. 193, 303–310 (2018). https://doi.org/10.1016/j.seppur.2017.10.056

    Article  Google Scholar 

  72. E.C. Umejuru, T. Mashifana, V. Kandjou, M. Amani-Beni, H. Sadeghifar, M. Fayazi, H. Karimi-Maleh, N.T. Sithole, Application of zeolite based nanocomposites for wastewater remediation: evaluating newer and environmentally benign approaches. Environ. Res. 231, 116073 (2023). https://doi.org/10.1016/j.envres.2023.116073

    Article  Google Scholar 

  73. D. Xu, X. Lu, Y. Zhang, P.R. Shearing, S. Zhang, D.J.L. Brett, S. Wang, Insights into in-situ catalytic degradation of plastic wastes over zeolite-based catalyst from perspective of three-dimensional pore structure evolution. Chem. Eng. J. 450, 138402 (2022). https://doi.org/10.1016/j.cej.2022.138402

    Article  Google Scholar 

  74. L. Wang, J. Li, Z. Du, M. **, J. Yao, Z. Zhang, MnFe2O4/zeolite composite catalyst for activating peroxymonosulfate to efficiently degrade antibiotic. Mater. Lett. 344, 134460 (2023). https://doi.org/10.1016/j.matlet.2023.134460

    Article  Google Scholar 

  75. J. Liu, X. Yu, L. Wang, M. Guo, W. Zhu, J. Chen, Study on degradation of marine product processing waste water by Zeolite/Bi/ZnO catalyst. J. Environ. Chem. Eng. 7, 102863 (2019). https://doi.org/10.1016/j.jece.2018.102863

    Article  Google Scholar 

  76. U. Khalil, Z. Liu, C. Peng, N. Hikichi, T. Wakihara, J. García-Martínez, T. Okubo, S. Bhattacharya, Ultrafast surfactant-templating of *BEA zeolite: an efficient catalyst for the cracking of polyethylene pyrolysis vapours. Chem. Eng. J. 412, 128566 (2021). https://doi.org/10.1016/j.cej.2021.128566

    Article  Google Scholar 

  77. G.T.M. Kadja, N.J. Azhari, S. Mardiana, N.T.U. Culsum, A. Maghfirah, Recent advances in the development of nanosheet zeolites as heterogeneous catalysts. Results Eng. 17, 100910 (2023). https://doi.org/10.1016/j.rineng.2023.100910

    Article  Google Scholar 

  78. L. Feyzi, N. Rahemi, S. Allahyari, Efficient degradation of tetracycline in aqueous solution using a coupled S-scheme ZnO/g-C3N4/zeolite P supported catalyst with water falling film plasma reactor. Process. Saf. Environ. Prot. 161, 827–847 (2022). https://doi.org/10.1016/j.psep.2022.03.076

    Article  Google Scholar 

  79. G. Hu, J. Yang, X. Duan, R. Farnood, C. Yang, J. Yang, W. Liu, Q. Liu, Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications. Chem. Eng. J. 417, 129209 (2021). https://doi.org/10.1016/j.cej.2021.129209

  80. S. El-Nahas, A.I. Osman, A.S. Arafat, H. Ala’a, H.M. Salman, Facile and affordable synthetic route of nano powder zeolite and its application in fast softening of water hardness. J. Water Process Eng. 33, 101104 (2020)

    Article  Google Scholar 

  81. T.W. Duan, B. Yan, Novel luminescent hybrids prepared by incorporating a rare earth ternary complex into CdS QD loaded zeolite y crystals through coordination reaction. CrystEngComm 16, 3395–3402 (2014). https://doi.org/10.1039/c3ce42479k

    Article  Google Scholar 

  82. J. Shi, J. Chen, Z. Feng, T. Chen, X. Wang, P. Ying, C. Li, Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites. J. Phys. Chem. B 110, 25612–25618 (2006). https://doi.org/10.1021/jp060439z

    Article  Google Scholar 

  83. D.G. Boer, J. Langerak, P.P. Pescarmona, Zeolites as selective adsorbents for CO2 separation. ACS Appl. Energy Mater. 6, 2634–2656 (2023). https://doi.org/10.1021/acsaem.2c03605

    Article  Google Scholar 

  84. T. Gong, L. Qin, J. Lu, H. Feng, ZnO modified ZSM-5 and y zeolites fabricated by atomic layer deposition for propane conversion. Phys. Chem. Chem. Phys. 18, 601–614 (2016). https://doi.org/10.1039/c5cp05043j

    Article  Google Scholar 

  85. J. Chen, Z. Feng, P. Ying, C. Li, ZnO clusters encapsulated inside micropores of zeolites studied by UV Raman and laser-induced luminescence spectroscopies. J. Phys. Chem. B 108, 12669–12676 (2004). https://doi.org/10.1021/jp048746x

    Article  Google Scholar 

  86. A. Corma, H. Garcia, Zeolite-based photocatalysts. Chem. Commun. 13, 1443–1459 (2004). https://doi.org/10.1039/B400147H

  87. S. Narayanan, P. Tamizhdurai, V.L. Mangesh, C. Ragupathi, P. Santhana krishnan, A. Ramesh, Recent advances in the synthesis and applications of mordenite zeolite—Review. RSC Adv. 11, 250–267 (2020). https://doi.org/10.1039/d0ra09434j

  88. L. Hlekelele, P.J. Franklyn, F. Dziike, S.H. Durbach, Novel synthesis of Ag decorated TiO2 anchored on zeolites derived from coal fly ash for the photodegradation of bisphenol-A. New J. Chem. 42, 1902–1912 (2018). https://doi.org/10.1039/c7nj02885g

    Article  Google Scholar 

  89. H. Yang, X. Fang, Z. Li, H. Sun, H. Chen, Copper-doped small pore zeolites for CO2 capture by honeycomb rotor with low temperature regeneration. ACS Sustain. Chem. Eng. 10, 1759–1764 (2022). https://doi.org/10.1021/acssuschemeng.1c08347

    Article  Google Scholar 

  90. Q. Zhang, S. Gao, J. Yu, Metal sites in zeolites: synthesis, characterization, and catalysis. Chem. Rev. 123, 6039–6106 (2023). https://doi.org/10.1021/acs.chemrev.2c00315

    Article  Google Scholar 

  91. M.E. Mahmoud, M.F. Amira, S. Daniele, A. El Nemr, M.E. Abouelanwar, B.M. Morcos, Adsorptive removal of Ag/Au quantum dots onto covalent organic frameworks@magnetic zeolite@arabic gum hydrogel and their catalytic microwave-Fenton oxidative degradation of Rifampicin antibiotic. J. Colloid Interface Sci. 624, 602–618 (2022). https://doi.org/10.1016/j.jcis.2022.05.132

    Article  Google Scholar 

  92. S.K. Lee, S.W. Han, G.Y. Cha, J.M. Park, H. Park, R. Ryoo, U.H. Lee, Base-type nitrogen do** in zeolite-templated carbon for enhancement of carbon dioxide sorption. J. CO2 Util. 62, 102084 (2022). https://doi.org/10.1016/j.jcou.2022.102084

  93. Z. Li, P. Liu, C. Ou, X. Dong, Porous metal-organic frameworks for carbon dioxide adsorption and separation at low pressure. ACS Sustain. Chem. Eng. 8, 15378–15404 (2020). https://doi.org/10.1021/acssuschemeng.0c05155

    Article  Google Scholar 

  94. A. Chatterjee, L. Wang, P. Van Der Voort, Metal-organic frameworks in photocatalytic Z-scheme heterojunctions: an emerging technology. Chem. Commun. 59, 3627–3654 (2023). https://doi.org/10.1039/d2cc05819g

    Article  Google Scholar 

  95. X. Zhang, J. Wang, X.X. Dong, Y.K. Lv, Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere 242, 125144 (2020). https://doi.org/10.1016/j.chemosphere.2019.125144

    Article  Google Scholar 

  96. S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.C. Zhou, Stable metal-organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1–35 (2018). https://doi.org/10.1002/adma.201704303

    Article  Google Scholar 

  97. S. Soni, P.K. Bajpai, C. Arora, A review on metal-organic framework: synthesis, properties and application. Charact. Appl. Nanomater. 2, 1–20 (2018). https://doi.org/10.24294/can.v2i2.551

  98. V. Kumar, V. Singh, K.H. Kim, E.E. Kwon, S.A. Younis, Metal-organic frameworks for photocatalytic detoxification of chromium and uranium in water. Coord. Chem. Rev. 447, 214148 (2021). https://doi.org/10.1016/j.ccr.2021.214148

    Article  Google Scholar 

  99. G. Capano, F. Ambrosio, S. Kampouri, K.C. Stylianou, A. Pasquarello, B. Smit, On the electronic and optical properties of metal-organic frameworks: case study of MIL-125 and MIL-125-NH2. J. Phys. Chem. C 124, 4065–4072 (2020). https://doi.org/10.1021/acs.jpcc.9b09453

    Article  Google Scholar 

  100. L. Tao, J. Wang, Z. Luo, J. Ren, D. Yin, Fabrication of an S-Scheme heterojunction photocatalyst MoS2/PANI with greatly enhanced photocatalytic performance. Langmuir 39, 11426–11438 (2023). https://doi.org/10.1021/acs.langmuir.3c01295

    Article  Google Scholar 

  101. M.D. Goudarzi, N. Khosroshahi, A. Hamlehdar, V. Safarifard, Construction of S-scheme heterojunction via incorporating g-C3N4 into Ce-based MOFs for promotion of charge-transfer in photocatalytic Cr(VI) detoxification. J. Environ. Chem. Eng. 11, 110169 (2023). https://doi.org/10.1016/j.jece.2023.110169

    Article  Google Scholar 

  102. S. Cao, J. Yu, G-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 5(12), 2101–2107 (2014). https://doi.org/10.1021/jz500546b

    Article  Google Scholar 

  103. W. Sun, X. Chen, X. Meng, Y. Gao, Highly efficient photocatalytic CO2 reduction by a ruthenium complex sensitizing g-C3N4/MOF hybrid photocatalyst. New J. Chem. 45, 8965–8970 (2021). https://doi.org/10.1039/d1nj01010g

    Article  Google Scholar 

  104. R. **ao, C. Zhao, Z. Zou, Z. Chen, L. Tian, H. Xu, H. Tang, Q. Liu, Z. Lin, X. Yang, In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 268, 118382 (2020). https://doi.org/10.1016/j.apcatb.2019.118382

    Article  Google Scholar 

  105. M. Elazar, D. Ph, Optimization of metal organic framework (Mof) synthesis for use in drug delivery. Technium4, 53–61 (2022). https://doi.org/10.47577/technium.v4i10.7730

  106. N.C. Chiu, M.T. Nord, L. Tang, L.S. Lancaster, J.S. Hirschi, S.K. Wolff, E.M. Hutchinson, K.A. Goulas, W.F. Stickle, T.J. Zuehlsdorff, C. Fang, K.C. Stylianou, Designing dual-functional metal-organic frameworks for photocatalysis. Chem. Mater. 34, 8798–8807 (2022). https://doi.org/10.1021/acs.chemmater.2c02089

    Article  Google Scholar 

  107. M.X. Wu, C. Wei, X.H. Wang, Q.Q. **a, H. Wang, X. Liu, Construction and sensing amplification of raspberry-shaped MOF@MOF. Inorg. Chem. 61, 4705–4713 (2022). https://doi.org/10.1021/acs.inorgchem.1c04027

    Article  Google Scholar 

  108. T. Zeng, D. Shi, Q. Cheng, G. Liao, H. Zhou, Z. Pan, Construction of novel phosphonate-based MOF/P-TiO2 heterojunction photocatalysts: enhanced photocatalytic performance and mechanistic insight. Environ. Sci. NANO 7, 861–879 (2020). https://doi.org/10.1039/c9en01180c

    Article  Google Scholar 

  109. P. Wang, J. Zhao, X. Li, Y. Yang, Q. Yang, C. Li, Assembly of ZIF nanostructures around free Pt nanoparticles: efficient size-selective catalysts for hydrogenation of alkenes under mild conditions. Chem. Commun. 49, 3330–3332 (2013). https://doi.org/10.1039/c3cc39275a

    Article  Google Scholar 

  110. S. Kampouri, F.M. Ebrahim, M. Fumanal, M. Nord, P.A. Schouwink, R. Elzein, R. Addou, G.S. Herman, B. Smit, C.P. Ireland, K.C. Stylianou, Enhanced visible-light-driven hydrogen production through MOF/MOF heterojunctions. ACS Appl. Mater. Interfaces 13, 14239–14247 (2021). https://doi.org/10.1021/acsami.0c23163

    Article  Google Scholar 

  111. F. Yu, M. **, Y. Zhang, C. Lei, L. Zhou, H. Zhu, B. Yu, Visible-light-driven Zr-MOF/BiOBr heterojunction for the efficient synchronous removal of hexavalent chromium and rhodamine B from wastewater. ACS Omega 7, 25066–25077 (2022). https://doi.org/10.1021/acsomega.2c01298

    Article  Google Scholar 

  112. G. Zhu, R. Graver, L. Emdadi, B. Liu, K.Y. Choi, D. Liu, Synthesis of zeolite@metal-organic framework core-shell particles as bifunctional catalysts. RSC Adv. 4, 30673–30676 (2014). https://doi.org/10.1039/c4ra03129f

    Article  Google Scholar 

  113. M.A. Sinnwell, Q.R.S. Miller, L. Palys, D. Barpaga, L. Liu, M.E. Bowden, Y. Han, S. Ghose, M.L. Sushko, H.T. Schaef, W. Xu, M. Nyman, P.K. Thallapally, Molecular intermediate in the directed formation of a zeolitic metal-organic framework. J. Am. Chem. Soc. 142, 17598–17606 (2020). https://doi.org/10.1021/jacs.0c07862

    Article  Google Scholar 

  114. Y. Li, M. Karimi, Y.N. Gong, N. Dai, V. Safarifard, H.L. Jiang, Integration of metal-organic frameworks and covalent organic frameworks: design, synthesis, and applications. Matter. 4, 2230–2265 (2021). https://doi.org/10.1016/j.matt.2021.03.022

    Article  Google Scholar 

  115. P. Xue, X. Pan, J. Huang, Y. Gao, W. Guo, J. Li, M. Tang, Z. Wang, In situ fabrication of porous MOF/COF hybrid photocatalysts for visible-light-driven hydrogen evolution. ACS Appl. Mater. Interfaces 13, 59915–59924 (2021). https://doi.org/10.1021/acsami.1c18238

    Article  Google Scholar 

  116. N.K. Sompalli, A. Mohanty, A.M. Mohan, P. Deivasigamani, Heterojunction Cr2O3–Ag2O nanocomposite decorated porous polymer monoliths a new class of visible light fast responsive heterogeneous photocatalysts for pollutant clean-up. J. Environ. Chem. Eng. 9, 104846 (2021). https://doi.org/10.1016/j.jece.2020.104846

    Article  Google Scholar 

  117. S.P. Asu, N.K. Sompalli, S. Kuppusamy, A.M. Mohan, P. Deivasigamani, CaO/CeO2 nanocomposite dispersed macro-/meso-porous polymer monoliths as new generation visible light heterogeneous photocatalysts. Mater. Today Sustain. 19, 100189 (2022). https://doi.org/10.1016/j.mtsust.2022.100189

    Article  Google Scholar 

  118. D. Jagadeesan, N.K. Sompalli, A.M. Mohan, C.V.S.B. Rao, S. Nagarajan, P. Deivasigamani, ZrO2–Ag2O nanocomposites encrusted porous polymer monoliths as high-performance visible light photocatalysts for the fast degradation of pharmaceutical pollutants. Photochem. Photobiol. Sci. 21, 1273–1286 (2022). https://doi.org/10.1007/s43630-022-00218-y

    Article  Google Scholar 

  119. D. Jagadeesan, P. Deivasigamani, Facile fabrication of novel In2S3–BiOCl nanocomposite-supported porous polymer monolith as new generation visible-light-responsive photocatalyst for decontaminating persistent toxic pollutants. Mater. Today Sustain. 23, 100428 (2023). https://doi.org/10.1016/j.mtsust.2023.100428

    Article  Google Scholar 

  120. S. Kuppusamy, D. Jagadeesan, A.M. Mohan, A. Pavoor Veedu, A.E. Jiji, A.M. John, P. Deivasigamani, NH2-MIL-125 MOF integrated translucent mesoporous polymer monolith as dual-light responsive new-generation photocatalyst for the expeditious decontamination of perennial pharmaceuticals. J. Environ. Chem. Eng. 11, 110355 (2023). https://doi.org/10.1016/j.jece.2023.110355

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakaran Deivasigamani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jagadeesan, D., Babu, D., Mohan, A.M., Deivasigamani, P. (2024). Renewable and Commercially Viable Porous Material-Supported Heterojunction Nanocomposites as UV-Visible Light-Responsive Photocatalysts for Environmental and Energy-Related Applications. In: Sathishkumar, P. (eds) Photocatalysis for Energy and Environmental Applications. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-97-1939-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1939-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1938-9

  • Online ISBN: 978-981-97-1939-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation