Probiogenomics and Genome Annotation in Bifidobacteria and Lactobacilli

  • Chapter
  • First Online:
Industrial Microbiology and Biotechnology

Abstract

Traditionally, the process of selecting probiotics involved conducting both in vitro and in vivo trials to assess characteristics such as resistance, adherence, and physiological functions. However, further research is needed to fully understand the metabolic capabilities and safety aspects of probiotics. One promising approach for gaining a better understanding of existing and potential probiotics is probiogenomics, which involves studying the genetic makeup of these microorganisms to uncover their health-promoting qualities and safety attributes. In particular, the use of Bifidobacteria and Lactobacilli in functional foods has shown promise in promoting host health, yet the precise molecular mechanisms behind their effects are not completely known. Recent advancements in genome sequencing have provided valuable insights into the genetic adaptations of these bacteria to the gastrointestinal tract and their interactions with the host. Next-generation sequencing (NGS) has made it possible to gather genome-wide data, greatly improving genome annotation efforts. Annotation tasks rely on tools for extracting information from nucleotide sequences, aiding our comprehension of life, evolution, and the diagnosis of genetic disorders. This chapter covers structural and functional annotations, comparative techniques, and visualization tools contributed by the scientific community. Besides these, the chapter covers quality control measures, the need for re-annotations, and the future of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 175.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 219.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar-Toala JE, Hall FG, Urbizo-Reyes UC, Garcia HS, Vallejo-Cordoba B, Gonzalez-Cordova AF, Hernandez-Mendoza A, Liceaga AM (2019) In silico prediction and in vitro assessment of multifunctional properties of postbiotics obtained from two probiotic bacteria. Probiotics Antimicrob Proteins 12:608

    Article  Google Scholar 

  • Armstrong J, Fiddes IT, Diekhans M, Paten B (2019) Whole-genome alignment and comparative annotation. Annu Rev Anim Biosci 7:41

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R, Briczinski EP, Traeger LL, Loquasto JR, Richards M, Horvath P (2009) Comparison of the complete genome sequences of Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04. J Bacteriol 191:4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boekhorst J, Helmer Q, Kleerebezem M, Siezen RJ (2006) Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology 152:273

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Gu Q, Li P, Chen S, Li Y (2019) Genomic analysis of Lactobacillus reuteri WHH1689 reveals its probiotic properties and stress resistance. Food Sci Nutr 7(2):844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claesson MJ, van Sinderen D, Toole PW (2008) Lactobacillus phylogenomics–towards a reclassification of the genus. Int J Syst Evol Microbiol 58:2945

    Article  CAS  PubMed  Google Scholar 

  • Devika NT, Raman K (2019) Deciphering the metabolic capabilities of Bifidobacteria using genome-scale metabolic models. Sci Rep 9(1):18222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA (2015) Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Sci Rep 5:13517

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDonald JR, Ziman R, Yuen RKC, Feuk L, Scherer SW (2014) The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Res 42:D986

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Rastogi YP, Jabin S, Kaur P, Amir M, Khatoon S (2020) A bacterial phyla dataset for protein function prediction. Data Brief 28:105002

    Article  PubMed  Google Scholar 

  • Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, El-Gebali S, Fraser MI (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351

    Article  CAS  PubMed  Google Scholar 

  • Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA 101:2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Coldren C, Karunamurthy A, Kip NS, Klee EW, Lincoln SE, Leon A, Pullambhatla M, Temple-Smolkin RL, Voelkerding KV (2018) Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the Association for Molecular Pathology and the College of American Pathologists. J Mol Diagn 20:4

    Article  CAS  PubMed  Google Scholar 

  • Rozman V, Lorbeg PM, Accetto T, Matijasic BB (2020) Characterization of antimicrobial resistance in lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. Int J Food Microbiol 314:108388

    Article  CAS  PubMed  Google Scholar 

  • Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos WM (2005) Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Biotechnol 16:204

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Mobeen F, Prakash T (2018) Exploration of survival traits, probiotic determinants, host interactions, and functional evolution of Bifidobacterial genomes using comparative genomics. Genes 9(10):477

    Article  PubMed  PubMed Central  Google Scholar 

  • Siezen RJ and Johan ET van Hylckama Vlieg (2011). Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Factories, 10, S3

    Google Scholar 

  • Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT, Rademaker JL (2010) Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environon Microbiol 12:758

    Article  CAS  Google Scholar 

  • Steward CA, Parker APJ, Minassian BA, Sisodiya SM, Frankish A, Harrow J (2017) Genome annotation for clinical genomic diagnostics: strengths and weaknesses. Genome Med 9:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Surachat K, Sangket U, Deachamag P, Chotigeat W (2017) In silico analysis of protein toxin and bacteriocins from lactobacillus paracasei SD1 genome and available online databases. PLoS One 12(8):e0183548

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanizawa Y, Fujisawa T, Nakamura Y (2018) DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 34:1037

    Article  CAS  PubMed  Google Scholar 

  • Thurmond J, Goodman JL, Strelets VB, Attrill H, Gramates LS, Marygold SJ, Matthews BB, Millburn G, Antonazzo G, Trovisco V (2019) FlyBase 2.0: the next generation. Nucleic Acids Res 47:D759

    Article  CAS  PubMed  Google Scholar 

  • Toropov V, Demyanova E, Shalaeva E, Sitkin S, Vakhitov T (2020) Wholegenome sequencing of Lactobacillus helveticus D75 and D76 confirms safety and probiotic potential. Microorganism 8(3):329

    Article  CAS  Google Scholar 

  • Turroni F, van Sinderen D, Ventura M (2011) Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol 149:3744

    Article  Google Scholar 

  • Valeriano VDV, Oh JK, Bagon BB, Kim H, Kang DK (2019) Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation. Genomics 111(1):24

    Article  CAS  PubMed  Google Scholar 

  • Ventura M, Turroni F, van Sinderen D (2012) Probiogenomics as a tool to obtain genetic insights into adaptation of probiotic bacteria to the human gut. Bioeng Bugs 3(2):73

    PubMed  PubMed Central  Google Scholar 

  • Wada J, Ando T, Kiyohara M, Ashida H, Kitaoka M, Yamaguchi M (2008) Bifidobacterium bifidum lacto-Nbiosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol 74:3996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

J. Jeyakanthan (JJ) thank MHRD—RUSA 2.0, New Delhi (F.24e51/2014-U), TANSCHE (RGP/2019-20/ALU/HECP-0049 dated: 27/04/2021), DST-INDO-TAIWAN (GITA/DST/TWN/P-86/2019), Department of Biotechnology Bioinformatics Centre (BIC)-No. BT/PR40154/BTIS/137/34/2021, DBT-NNP-N0.BT/PR40156/BTIS/137/54/2023, DST-Fund for Improvement of S&T Infrastructure in Universities & Higher Educational Institutions (FIST) (SR/FST/LSI-667/2016) (C), and DST-Promotion of University Research and Scientific Excellence (PURSE phase II) (No. SR/PURSE Phase 2/38(G), 2017).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandian, C.J., Rajendren, S.M., Jeyaraman, J. (2024). Probiogenomics and Genome Annotation in Bifidobacteria and Lactobacilli. In: Verma, P. (eds) Industrial Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-97-1912-9_20

Download citation

Publish with us

Policies and ethics

Navigation