Microalgal-Based Biorefinery Approaches Toward a Sustainable Future

  • Chapter
  • First Online:
Industrial Microbiology and Biotechnology

Abstract

The formidable upsurge in energy demand along with the current fuel crisis and dwindling fossil fuel reserves, coupled with the alarming increase in atmospheric carbon dioxide (CO2) levels, made it imperative to embrace cleaner and greener energy source to ensure sustainable future of the planet “Earth.” In pursuits of this sustainable goal, microalgae have emerged as a viable solution capable of generating biofuels with lower carbon emission profile such as biodiesel, bioethanol, and biogases such as syngas, methane, hydrogen, hythane etc., along with value-added compounds such as bioplastics, biofertilizer, biochar etc., thus presenting a holistic approach to mitigate global concerns of energy crisis, environmental, and economic security. This chapter critically scrutinizes the production of “microalgae propelled bioenergy” and circular economic behavior of microalgae by employing a cascading approach, thus enabling a versatile biorefinery model. Indeed, by embracing “waste to wealth” paradigm, this approach engenders a synergistic orchestration of production of multiple products, promoting sustainable and efficient resource utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe MM, Martins JR, Sanvezzo PB, Macedo JV, Branciforti MC, Halley P, Botaro VR, Brienzo M (2021) Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers 13. https://doi.org/10.3390/polym13152484

  • Abomohra AE, El-Hefnawy ME, Wang Q, Huang J, Li L, Tang J, Mohammed S (2021) Sequential bioethanol and biogas production coupled with heavy metal removal using dry seaweeds: Towards enhanced economic feasibility. J Clean Prod 316. https://doi.org/10.1016/j.jclepro.2021.128341

  • Adnan MA, Hossain MM (2019) Integrated drying and gasification of wet microalgae biomass to produce H2 rich syngas—a thermodynamic approach by considering in-situ energy supply. Int J Hydrog Energy 44. https://doi.org/10.1016/j.ijhydene.2019.02.165

  • Adnan MA, **ong Q, Muraza O, Hossain MM (2020) Gasification of wet microalgae to produce H2-rich syngas and electricity: a thermodynamic study considering exergy analysis. Renew Energy 147. https://doi.org/10.1016/j.renene.2019.10.027

  • Ahmad A, Shah SMU, Othman MF, Abdullah MA (2015a) Aerobic and anaerobic co-cultivation of Nannochloropsis oculata with oil palm empty fruit bunch for enhanced biomethane production and palm oil mill effluent treatment. Desalin Water Treat 56. https://doi.org/10.1080/19443994.2014.960458

  • Ahmad FB, Zhang Z, Doherty WOS, O’Hara IM (2015b) A multi-criteria analysis approach for ranking and selection of microorganisms for the production of oils for biodiesel production. Bioresour Technol 190. https://doi.org/10.1016/j.biortech.2015.04.083

  • Ali S, Paul Peter A, Chew KW, Munawaroh HSH, Show PL (2021) Resource recovery from industrial effluents through the cultivation of microalgae: a review. Bioresour Technol 337. https://doi.org/10.1016/j.biortech.2021.125461

  • Ali SS, Mastropetros SG, Schagerl M, Sakarika M, Elsamahy T, El-Sheekh M, Sun J, Kornaros M (2022) Recent advances in wastewater microalgae-based biofuels production: a state-of-the-art review. Energy Rep 8. https://doi.org/10.1016/j.egyr.2022.09.143

  • Ambika S, Kumar M, Pisharody L, Malhotra M, Kumar G, Sreedharan V, Singh L, Nidheesh PV, Bhatnagar A (2022) Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: mechanisms, methods, and prospects. Chem Eng J 439. https://doi.org/10.1016/j.cej.2022.135716

  • Ammar EE, Aioub AAA, Elesawy AE, Karkour AM, Mouhamed MS, Amer AA, El-Shershaby NA (2022) Algae as bio-fertilizers: between current situation and future prospective: the role of algae as a bio-fertilizer in serving of ecosystem. Saudi J Biol Sci 29. https://doi.org/10.1016/j.sjbs.2022.03.020

  • Ariede MB, Candido TM, Jacome ALM, Velasco MVR, de Carvalho JCM, Baby AR (2017) Cosmetic attributes of algae—a review. Algal Res 25. https://doi.org/10.1016/j.algal.2017.05.019

  • Arora N, Patel A, Sartaj K et al (2016) Bioremediation of domestic and industrial wastewaters integrated with enhanced biodiesel production using novel oleaginous microalgae. Environ Sci Pollut 23. https://doi.org/10.1007/s11356-016-7320-y

  • Arora N, Patel A, Sharma M, Mehtani J, Pruthi PA, Pruthi V, Poluri KM (2017a) Insights into the enhanced lipid production characteristics of a fresh water microalga under high salinity conditions. Ind Eng Chem Res 56. https://doi.org/10.1021/acs.iecr.7b00841

  • Arora N, Gulati K, Patel A, Pruthi PA, Poluri KM, Pruthi V (2017b) A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae. Algal Res 24. https://doi.org/10.1016/j.algal.2017.03.012

  • Arora N, Pienkos PT, Pruthi V, Poluri KM, Guarnieri MT (2018) Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnol Adv 36. https://doi.org/10.1016/j.biotechadv.2018.04.005

  • Arora N, Kumari P, Kumar A, Gangwar R, Gulati K, Pruthi PA et al (2019) Delineating the molecular responses of a halotolerant microalga using integrated omics approach to identify genetic engineering targets for enhanced TAG production. Biotechnol Biofuels 12. https://doi.org/10.1186/s13068-018-1343-1

  • Arora N, Tripathi S, Pruthi PA et al (2020) Assessing the robust growth and lipid-accumulating characteristics of Scenedesmus sp. for biodiesel production. Environ Sci Pol 27. https://doi.org/10.1007/s11356-019-07023-8

  • Arora N, Tripathi S, Poluri KM (2023) Biochemical insights into enhanced lipid production by a microalga under combined stress of salinity and arsenic. J Environ Chem Eng 11. https://doi.org/10.1016/j.jece.2023.110778

  • Arun J, Varshini P, Prithvinath PK, Priyadarshini V, Gopinath KP (2018) Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies. Bioresour Technol 261. https://doi.org/10.1016/j.biortech.2018.04.029

  • Assemany P, de Paula MI, Calijuri ML, Reis A (2019) Complementarity of substrates in anaerobic digestion of wastewater grown algal biomass. Waste Biomass Valoriz 11. https://doi.org/10.1007/s12649-019-00875-8

  • Atmanli A (2020) Experimental comparison of biodiesel production performance of two different microalgae. Fuel 278. https://doi.org/10.1016/j.fuel.2020.118311

  • Ayele A, Suresh A, Benor S, Konwarh R (2021) Optimization of chromium(VI) removal by indigenous microalga (Chlamydomonas sp.)-based biosorbent using response surface methodology. Water Environ Res 10. https://doi.org/10.1002/wer.1510

  • Aysu T, Ola O, Maroto-Valer MM, Sanna A (2017) Effects of titania based catalysts on in-situ pyrolysis of Pavlova microalgae. Fuel Process Technol 166. https://doi.org/10.1016/j.fuproc.2017.05.001

  • Bach QV, Chen WH, Lin SC, Sheen HK, Chang JS (2017) Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating. Energy Convers Manag 141. https://doi.org/10.1016/j.enconman.2016.07.035

  • Barone V, Baglieri A, Stevanato P, Broccanello C, Bertoldo G, Bertaggia M, Cagnin M, Pizzeghello D, Moliterni VMC, Mandolino G, Fornasier F, Squartini A, Nardi S, Concheri G (2018) Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J Appl Phycol 30. https://doi.org/10.1007/s10811-017-1283-3

  • Batista AP, Ambrosano L, Graça S, Sousa C, Marques PASS, Ribeiro B, Botrel EP, Castro Neto P, Gouveia L (2015) Combining urban wastewater treatment with biohydrogen production—an integrated microalgae-based approach. Bioresour Technol 184. https://doi.org/10.1016/j.biortech.2014.10.064

  • Bibi F, Yasmin H, Jamal A, Al-Harbi MS, Ahmad M, Zafar M, Ahmad B, Samra BN, Ahmed AF, Ali MI (2021) Deciphering role of technical bioprocess parameters for bioethanol production using microalgae. Saudi J Biol Sci 28. https://doi.org/10.1016/j.sjbs.2021.10.011

  • Bibi F, Jamal A, Huang Z, Urynowicz M, Ishtiaq Ali M (2022) Advancement and role of abiotic stresses in microalgae biorefinery with a focus on lipid production. Fuel 316. https://doi.org/10.1016/j.fuel.2022.123192

  • Binda G, Spanu D, Bettinetti R, Magagnin L, Pozzi A, Dossi C (2020) Comprehensive comparison of microalgae-derived biochar from different feedstocks: a prospective study for future environmental applications. Algal Res 52. https://doi.org/10.1016/j.algal.2020.102103

  • Bozbas K (2008) Biodiesel as an alternative motor fuel: production and policies in the European Union. Renew Sustain Energy Rev 12. https://doi.org/10.1016/j.rser.2005.06.001

  • Braun JCA, Colla LM (2023) Use of Microalgae for the Development of Biofertilizers and Biostimulants. Bioenerg Res 16. https://doi.org/10.1007/s12155-022-10456-8

  • Çakmak EK, Ugurlu A (2020) Enhanced biogas production of red microalgae via enzymatic pretreatment and preliminary economic assessment. Algal Res 50. https://doi.org/10.1016/j.algal.2020.101979

  • Carocho M, Morales P, Ferreira ICFR (2015) Natural food additives: quo vadis? Trends Food Sci Technol 45. https://doi.org/10.1016/j.tifs.2015.06.007

  • Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C (2013) Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenergy 56. https://doi.org/10.1016/j.biombioe.2013.05.035

  • Chandra N, Shukla P, Mallick N (2020) Role of cultural variables in augmenting carbohydrate accumulation in the green microalga Scenedesmus acuminatus for bioethanol production. Biocatal Agric Biotechnol 26. https://doi.org/10.1016/j.bcab.2020.101632

  • Chang YM, Tsai WT, Li MH (2015) Chemical characterization of char derived from slow pyrolysis of microalgal residue. J Anal Appl Pyrolysis 111. https://doi.org/10.1016/j.jaap.2014.12.004

  • Chaudhary R, Dikshit AK, Tong YW (2018) Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Environ Sci Pollut Res 25. https://doi.org/10.1007/s11356-017-9575-3

  • Cheirsilp B, Maneechote W (2022) Insight on zero waste approach for sustainable microalgae biorefinery: sequential fractionation, conversion and applications for high-to-low value-added products. Bioresour Technol Rep 18. https://doi.org/10.1016/j.biteb.2022.101003

  • Cheirsilp B, Wantip K, Chai-issarapap N, Maneechote W, Pekkoh J, Duangjan K, Ruangrit K, Pumas C, Pathom-aree W, Srinuanpan S (2022) Enhanced production of astaxanthin and co-bioproducts from microalga Haematococcus sp. integrated with valorization of industrial wastewater under two-stage LED light illumination strategy. Environ Technol Innov 28. https://doi.org/10.1016/j.eti.2022.102620

  • Cheirsilp B, Maneechote W, Srinuanpan S, Angelidaki I (2023) Microalgae as tools for bio-circular-green economy: zero-waste approaches for sustainable production and biorefineries of microalgal biomass. Bioresour Technol 387. https://doi.org/10.1016/j.biortech.2023.129620

  • Chen WH, Huang MY, Chang JS, Chen CY (2014a) Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresour Technol 169. https://doi.org/10.1016/j.biortech.2014.06.086

  • Chen WH, Wu ZY, Chang JS (2014b) Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus CNW-N. Bioresour Technol 155. https://doi.org/10.1016/j.biortech.2013.12.116

  • Chen CY, Kuo EW, Nagarajan D, Ho SH, Di Dong C, Lee DJ, Chang JS (2020) Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresour Technol 302. https://doi.org/10.1016/j.biortech.2020.122814

  • Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee DJ, Chang JS (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229. https://doi.org/10.1016/j.biortech.2017.01.006

  • Chokshi K, Pancha I, Ghosh A, Mishra S (2016) Microalgal biomass generation by phycoremediation of dairy industry wastewater: an integrated approach towards sustainable biofuel production. Bioresour Technol 221. https://doi.org/10.1016/j.biortech.2016.09.070

  • Choudhary P, Prajapati SK, Malik A (2016) Screening native microalgal consortia for biomass production and nutrient removal from rural wastewaters for bioenergy applications. Ecol Eng 91. https://doi.org/10.1016/j.ecoleng.2015.11.056

  • Choudhary S, Tripathi S, Poluri KM (2022) Microalgal-based bioenergy: strategies, prospects, and sustainability. Energy Fuels 36. https://doi.org/10.1021/acs.energyfuels.2c02922

  • Chowdhury H, Loganathan B (2019) Third-generation biofuels from microalgae: a review. Curr Opin Green Sustain Chem 20. https://doi.org/10.1016/j.cogsc.2019.09.003

  • Constantino A, Rodrigues B, Leon R, Barros R, Raposo S (2021) Alternative chemo-enzymatic hydrolysis strategy applied to different microalgae species for bioethanol production. Algal Res 56. https://doi.org/10.1016/j.algal.2021.102329

  • Costa JAV, Zaparoli M, Cassuriaga APA, Cardias BB, da Silva Vaz B, de Morais MG, Moreira JB (2023) Biochar production from microalgae: a new sustainable approach to wastewater treatment based on a circular economy. Enzym Microb Technol 169. https://doi.org/10.1016/j.enzmictec.2023.110281

  • Das P, Chandramohan VP, Mathimani T, Pugazhendhi A (2021) Recent advances in thermochemical methods for the conversion of algal biomass to energy. Sci Total Environ 766. https://doi.org/10.1016/j.scitotenv.2020.144608

  • De Bhowmick G, Sarmah AK, Sen R (2019) Zero-waste algal biorefinery for bioenergy and biochar: a green leap towards achieving energy and environmental sustainability. Sci Total Environ 650. https://doi.org/10.1016/j.scitotenv.2018.10.002

  • de Jesus SS, Ferreira GF, Moreira LS, Filho RM (2020) Biodiesel production from microalgae by direct transesterification using green solvents. Renew Energy 160. https://doi.org/10.1016/j.renene.2020.07.056

  • de Mendonça HV, Ometto JPHB, Otenio MH, Marques IPR, dos Reis AJD (2018) Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: comparison between batch and continuous operation. Sci Total Environ 633. https://doi.org/10.1016/j.scitotenv.2018.03.157

  • de Vasconcellos A, Miller AH, Aranda DAG, Nery JG (2018) Biocatalysts based on nanozeolite-enzyme complexes: effects of alkoxysilane surface functionalization and biofuel production using microalgae lipids feedstock. Colloids Surf B Biointerfaces 165. https://doi.org/10.1016/j.colsurfb.2018.02.029

  • Deepanraj B, Lawrence P, Mathews K, Deepanraj B (2011) Experimental investigation on zirconia coated high compression spark ignition engine with ethanol as fuel. J Sci Ind Res 70. https://doi.org/10.1016/j.enconman.2014.07.080

  • Dehghani J, Adibkia K, Movafeghi A, Maleki-Kakelar H, Saeedi N, Omidi Y (2020) Towards a new avenue for producing therapeutic proteins: microalgae as a tempting green biofactory. Biotechnol Adv 40. https://doi.org/10.1016/j.biotechadv.2019.107499

  • Demirbas A (2009) Combustion efficiency impacts of biofuels. Energy Sources A Recov Util Environ Effects 31. https://doi.org/10.1080/15567030701743718

  • Deprá MC, Severo IA, dos Santos AM, Zepka LQ, Jacob-Lopes E (2020) Environmental impacts on commercial microalgae-based products: sustainability metrics and indicators. Algal Res 51. https://doi.org/10.1016/j.algal.2020.102056

  • Desai RK, Monteillet H, Li X, Schuur B, Kleijn JM, Leermakers FAM, Wijffels RH, Eppink MHM (2018) One-step mild biorefinery of functional biomolecules from microalgae extracts. Reaction Chem Eng 3. https://doi.org/10.1039/c7re00116a

  • Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P (2018) Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valoriz 9. https://doi.org/10.1007/s12649-017-9873-5

  • Dineshkumar R, Subramanian J, Gopalsamy J, Jayasingam P, Arumugam A, Kannadasan S, Sampathkumar P (2019) The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste Biomass Valoriz 10. https://doi.org/10.1007/s12649-017-0123-7

  • Ewurum CE (2018) Techno-economic analysis of micro-algae bio-jet fuel production processes the degree of doctor of philosophy department of chemical and environmental engineering

    Google Scholar 

  • Fal S, Smouni A, Arroussi HE (2023) Integrated microalgae-based biorefinery for wastewater treatment, industrial CO2 sequestration and microalgal biomass valorization: a circular bioeconomy approach. Environ Adv 12. https://doi.org/10.1016/j.envadv.2023.100365

  • Feng H, Sun C, Zhang C, Chang H, Zhong N, Wu W, Wu H, Tan X, Zhang M, Ho SH (2022) Bioconversion of mature landfill leachate into biohydrogen and volatile fatty acids via microalgal photosynthesis together with dark fermentation. Energy Convers Manag 252. https://doi.org/10.1016/j.enconman.2021.115035

  • Ferreira A, Ribeiro B, Ferreira AF, Tavares MLA, Vladic J, Vidović S, Cvetkovic D, Melkonyan L, Avetisova G, Goginyan V, Gouveia L (2019) Scenedesmus obliquus microalga-based biorefinery—from brewery effluent to bioactive compounds, biofuels and biofertilizers—aiming at a circular bioeconomy. Biofuels Bioprod Biorefin 13. https://doi.org/10.1002/bbb.2032

  • Fetyan NAH, El-Sayed AEB, Ibrahim FM, Attia YA, Sadik MW (2022) Bioethanol production from defatted biomass of Nannochloropsis oculata microalgae grown under mixotrophic conditions. Environ Sci Pollut Res Int 29. https://doi.org/10.1007/s11356-021-15758-6

  • Fito J, Abrham S, Angassa K (2020) Adsorption of methylene blue from textile industrial wastewater onto activated carbon of Parthenium hysterophorus. Int J Environ Res 14. https://doi.org/10.1007/s41742-020-00273-2

  • Francavilla M, Kamaterou P, Intini S, Monteleone M, Zabaniotou A (2015) Cascading microalgae biorefinery: fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue. Algal Res 11. https://doi.org/10.1016/j.algal.2015.06.017

  • Gan YY, Ong HC, Chen WH, Sheen HK, Chang JS, Chong CT, Ling TC (2020) Microwave-assisted wet torrefaction of microalgae under various acids for coproduction of biochar and sugar. J Clean Prod 253. https://doi.org/10.1016/j.jclepro.2019.119944

  • Garoma T, Nguyen D (2016) Anaerobic co-digestion of microalgae Scenedesmus sp. and TWAS for biomethane production. Water Environ Res 88. https://doi.org/10.2175/106143015x14362865227472

  • Ghimire A, Kumar G, Sivagurunathan P, Shobana S, Saratale GD, Kim HW, Luongo V, Esposito G, Munoz R (2017) Bio-hythane production from microalgae biomass: key challenges and potential opportunities for algal bio-refineries. Bioresour Technol 241. https://doi.org/10.1016/j.biortech.2017.05.156

  • Giang TT, Lunprom S, Liao Q, Reungsang A, Salakkam A (2019) Enhancing hydrogen production from Chlorella sp. biomass by pre-hydrolysis with simultaneous saccharification and fermentation (PSSF). Energies 12. https://doi.org/10.3390/en12050908

  • Gifuni I, Pollio A, Safi C, Marzocchella A, Olivieri G (2019) Current bottlenecks and challenges of the microalgal biorefinery. Trends Biotechnol 37. https://doi.org/10.1016/j.tibtech.2018.09.006

  • Goria K, Singh HM, Singh A, Kothari R, Tyagi VV (2023) Insights into biohydrogen production from algal biomass: challenges, recent advancements and future directions. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2023.03.174

  • Goshtasbi H, Okolodkov YB, Movafeghi A, Awale S, Safary A, Barar J, Omidi Y (2023) Harnessing microalgae as sustainable cellular factories for biopharmaceutical production. Algal Res 74. https://doi.org/10.1016/j.algal.2023.103237

  • Goswami RK, Agrawal K, Upadhyaya HM, Gupta VK, Verma P (2022) Microalgae conversion to alternative energy, operating environment and economic footprint: an influential approach towards energy conversion, and management. Energy Convers Manag 269. https://doi.org/10.1016/j.enconman.2022.116118

  • Gramegna G, Scortica A, Scafati V, Ferella F, Gurrieri L, Giovannoni M, Bassi R, Sparla F, Mattei B, Benedetti M (2020) Exploring the potential of microalgae in the recycling of dairy wastes. Bioresour Technol Rep 12. https://doi.org/10.1016/j.biteb.2020.100604

  • Grierson S, Strezov V, Ellem G, Mcgregor R, Herbertson J (2009) Thermal characterisation of microalgae under slow pyrolysis conditions. J Anal Appl Pyrolysis 85. https://doi.org/10.1016/j.jaap.2008.10.003

  • Guldhe A, Singh P, Kumari S, Rawat I, Permaul K, Bux F (2016) Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst. Renew Energy 85. https://doi.org/10.1016/j.renene.2015.07.059

  • Hariz HB, Takriff MS, Mohd Yasin NH, Ba-Abbad MM, Mohd Hakimi NIN (2019) Potential of the microalgae-based integrated wastewater treatment and CO2 fixation system to treat palm oil mill effluent (POME) by indigenous microalgae; Scenedesmus sp. and Chlorella sp. J Water Process Eng 32. https://doi.org/10.1016/j.jwpe.2019.100907

  • Harman-Ware AE, Morgan T, Wilson M, Crocker M, Zhang J, Liu K, Stork J, Debolt S (2013) Microalgae as a renewable fuel source: fast pyrolysis of Scenedesmus sp. Renew Energy 60. https://doi.org/10.1016/j.renene.2013.06.016

  • Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ, von Keitz MG, Valentas KJ (2010) Hydrothermal carbonization of microalgae. Biomass Bioenergy 34. https://doi.org/10.1016/j.biombioe.2010.01.032

  • Hemalatha M, Sarkar O, Venkata Mohan S (2019a) Self-sustainable azolla-biorefinery platform for valorization of biobased products with circular-cascading design. Chem Eng J 373. https://doi.org/10.1016/j.cej.2019.04.013

  • Hemalatha M, Sravan JS, Min B, Venkata Mohan S (2019b) Microalgae-biorefinery with cascading resource recovery design associated to dairy wastewater treatment. Bioresour Technol 284. https://doi.org/10.1016/j.biortech.2019.03.106

  • Hong Y, Chen W, Luo X, Pang C, Lester E, Wu T (2017) Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production. Bioresour Technol 237. https://doi.org/10.1016/j.biortech.2017.02.006

  • Hongyang S, Yalei Z, Chunmin Z, Xuefei Z, **peng L (2011) Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour Technol 102. https://doi.org/10.1016/j.biortech.2011.08.016

  • Hu Z, Ma X, Jiang E (2017) The effect of microwave pretreatment on chemical loo** gasification of microalgae for syngas production. Energy Convers Manag 143. https://doi.org/10.1016/j.enconman.2017.04.023

  • Hu Z, Jiang E, Ma X (2019) The effect of oxygen carrier content and temperature on chemical loo** gasification of microalgae for syngas production. J Energy Inst 92. https://doi.org/10.1016/j.joei.2018.05.001

  • Huang J, ** countries. Bioresour Technol 241. https://doi.org/10.1016/j.biortech.2017.05.097

  • Nookwam K, Cheirsilp B, Maneechote W, Boonsawang P, Sukkasem C (2022) Microbial fuel cells with photosynthetic-cathodic chamber in vertical cascade for integrated bioelectricity, biodiesel feedstock production and wastewater treatment. Bioresour Technol 346. https://doi.org/10.1016/j.biortech.2021.126559

  • Okeke ES, Ejeromedoghene O, Okoye CO, Ezeorba TPC, Nyaruaba R, Ikechukwu CK, Oladipo A, Orege JI (2022) Microalgae biorefinery: an integrated route for the sustainable production of high-value-added products. Energy Convers Manag X 16. https://doi.org/10.1016/j.ecmx.2022.100323

  • Olabi AG, Shehata N, Sayed ET, Rodriguez C, Anyanwu RC, Russell C, Abdelkareem MA (2023) Role of microalgae in achieving sustainable development goals and circular economy. Sci Total Environ 854. https://doi.org/10.1016/j.scitotenv.2022.158689

  • Park SY, Binkley RM, Kim WJ, Lee MH, Lee SY (2018) Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab Eng 49. https://doi.org/10.1016/j.ymben.2018.08.002

  • Parimi NS, Singh M, Kastner JR, Das KC (2015) Biomethane and biocrude oil production from protein extracted residual Spirulina platensis. Energy 93. https://doi.org/10.1016/j.energy.2015.09.041

  • Park WK, Min K, Yun JH, Kim M, Kim MS, Park GW, Lee SY, Lee S, Lee J, Lee JP, Moon M, Lee JS (2022) Paradigm shift in algal biomass refinery and its challenges. Bioresour Technol 346. https://doi.org/10.1016/j.biortech.2021.126358

  • Patrinou V, Tsolcha ON, Tatoulis TI, Stefanidou N, Dourou M, Moustaka-Gouni M, Aggelis G, Tekerlekopoulou AG (2020) Biotreatment of poultry waste coupled with biodiesel production using suspended and attached growth microalgal-based systems. Sustainability (Switzerland) 12. https://doi.org/10.3390/su12125024

  • Pavlik D, Zhong Y, Daiek C, Liao W, Morgan R, Clary W, Liu Y (2017) Microalgae cultivation for carbon dioxide sequestration and protein production using a high-efficiency photobioreactor system. Algal Res 25. https://doi.org/10.1016/j.algal.2017.06.003

  • Peng N, Gai C, Peng C (2020) Enhancing hydrogen-rich syngas production and energy recovery efficiency by integrating hydrothermal carbonization pretreatment with steam gasification. Energy 210. https://doi.org/10.1016/j.energy.2020.118655

  • Perianes-Rodriguez A, Waltman L, van Eck NJ (2016) Constructing bibliometric networks: a comparison between full and fractional counting. J Informet 10. https://doi.org/10.1016/j.joi.2016.10.006

  • Phwan CK, Ong HC, Chen WH, Ling TC, Ng EP, Show PL (2018) Overview: comparison of pretreatment technologies and fermentation processes of bioethanol from microalgae. Energy Convers Manag 173. https://doi.org/10.1016/j.enconman.2018.07.054

  • Poh ZL, Amalina Kadir WN, Lam MK, Uemura Y, Suparmaniam U, Lim JW, Show PL, Lee KT (2020) The effect of stress environment towards lipid accumulation in microalgae after harvesting. Renew Energy 154. https://doi.org/10.1016/j.renene.2020.03.081

  • Prajapati SK, Malik A, Vijay VK (2014) Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion. Appl Energy 114. https://doi.org/10.1016/j.apenergy.2013.08.021

  • Qu W, Loke Show P, Hasunuma T, Ho SH (2020) Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp. QWY37 used for cell-displayed bioethanol production. Bioresour Technol 305. https://doi.org/10.1016/j.biortech.2020.123072

  • Raheem A, Liu H, Ji G, Zhao M (2019) Gasification of lipid-extracted microalgae biomass promoted by waste eggshell as CaO catalyst. Algal Res 42. https://doi.org/10.1016/j.algal.2019.101601

  • Raheem A, Abbasi SA, Mangi FH, Ahmed S, He Q, Ding L, Memon AA, Zhao M, Yu G (2021) Gasification of algal residue for synthesis gas production. Algal Res 58. https://doi.org/10.1016/j.algal.2021.102411

  • Rajesh Banu J, Preethi, Kavitha S, Gunasekaran M, Kumar G (2020) Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour Technol 302. https://doi.org/10.1016/j.biortech.2020.122822

  • Rajpoot AS, Choudhary T, Chelladurai H, Nath Verma T, Shende V (2022) A comprehensive review on bioplastic production from microalgae. Mater Today Proc 56. https://doi.org/10.1016/j.matpr.2022.01.060

  • Raslavičius L, Striūgas N, Felneris M (2018) New insights into algae factories of the future. Renew Sustain Energy Rev 81. https://doi.org/10.1016/j.rser.2017.08.024

  • Reza Talaghat M, Mokhtari S, Saadat M (2020) Modeling and optimization of biodiesel production from microalgae in a batch reactor. Fuel 280. https://doi.org/10.1016/j.fuel.2020.118578

  • Rossi S, Pizzera A, Bellucci M, Marazzi F, Mezzanotte V, Parati K, Ficara E (2022) Piggery wastewater treatment with algae-bacteria consortia: pilot-scale validation and techno-economic evaluation at farm level. Bioresour Technol 351. https://doi.org/10.1016/j.biortech.2022.127051

  • Roy Chong JW, Tan X, Khoo KS, Ng HS, Jonglertjunya W, Yew GY, Show PL (2022) Microalgae-based bioplastics: future solution towards mitigation of plastic wastes. Environ Res 206. https://doi.org/10.1016/j.envres.2021.112620

  • Ruiz-Marin A, Canedo-López Y, Chávez-Fuentes P (2020) Biohydrogen production by Chlorella vulgaris and Scenedesmus obliquus immobilized cultivated in artificial wastewater under different light quality. AMB Expr 10. https://doi.org/10.1186/s13568-020-01129-w

  • Saini DK, Pabbi S, Shukla P (2018) Cyanobacterial pigments: perspectives and biotechnological approaches. Food Chem Toxicol 120. https://doi.org/10.1016/j.fct.2018.08.002

  • Saleh Khodaparasti M, Reza Shirazvatan M, Tavakoli O, Ali Khodadadi A (2022) Co-pyrolysis of municipal sewage sludge and microalgae chlorella vulgaris: products’ optimization; thermo-kinetic study, and ANN modeling. Energy Convers Manag 254. https://doi.org/10.1016/j.enconman.2022.115258

  • Sarma PJ, Malakar B, Mohanty K (2023) Self-sustaining bioelectricity generation in plant-based microbial fuel cells (PMFCs) with microalgae-assisted oxygen-reducing biocathode. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-03848-z

  • Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF (2019) Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences 26. https://doi.org/10.1016/j.sjbs.2017.11.003

  • Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, Asraful Alam M, Mehmood MA (2020) Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci Total Environ 704. https://doi.org/10.1016/j.scitotenv.2019.135303

  • Sharma GK, Khan SA, Shrivastava M, Bhattacharyya R, Sharma A, Gupta DK, Kishore P, Gupta N (2021) Circular economy fertilization: phycoremediated algal biomass as biofertilizers for sustainable crop production. J Environ Manag 287. https://doi.org/10.1016/j.jenvman.2021.112295

  • Shi S, Ochedi FO, Yu J, Liu Y (2021) Porous biochars derived from microalgae pyrolysis for CO2 adsorption. Energy Fuels 35. https://doi.org/10.1021/acs.energyfuels.0c04091

  • Singh HM, Tyagi VV, Kothari R, Azam R, Slathia PS, Singh B (2020) Bioprocessing of cultivated Chlorella pyrenoidosa on poultry excreta leachate to enhance algal biomolecule profile for resource recovery. Bioresour Technol 316. https://doi.org/10.1016/j.biortech.2020.123850

  • Singh H, Rout S, Das D (2022) Dark fermentative biohydrogen production using pretreated Scenedesmus obliquus biomass under an integrated paradigm of biorefinery. Int J Hydrog Energy 47. https://doi.org/10.1016/j.ijhydene.2021.10.018

  • Singh I, Pandey A, Shangdiar S, Rai PK, Kumar A, Amesho KTT, Bux F (2023a) Towards sustainable energy: harnessing microalgae biofuels for a greener future. Sustainability (Switzerland) 15. https://doi.org/10.3390/su151814029

  • Singh J, Singh V, Ojha CSP, Arora MK (2023b) Assessment of recent changes (2011–2020) in glacier thickness and runoff variability in Gangotri glacier, India. Hydrol Sci J. https://doi.org/10.1080/02626667.2023.2258861

  • Sivaramakrishnan R, Suresh S, Kanwal S, Ramadoss G, Ramprakash B, Incharoensakdi A (2022) Microalgal biorefinery concepts’ developments for biofuel and bioproducts: current perspective and bottlenecks. Int J Mol Sci 23. https://doi.org/10.3390/ijms23052623

  • Soares FR, Martins G, Seo ESM (2013) An assessment of the economic aspects of CO2 sequestration in a route for biodiesel production from microalgae. Environ Technol 34. https://doi.org/10.1080/09593330.2013.816784

  • Solé-Bundó M, Eskicioglu C, Garfí M, Carrère H, Ferrer I (2017) Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment. Bioresour Technol 237. https://doi.org/10.1016/j.biortech.2017.03.151

  • Somers MD, Chen P, Clip**er J, Cruce JR, Davis R, Lammers PJ, Quinn JC (2021) Techno-economic and life-cycle assessment of fuel production from mixotrophic Galdieria sulphuraria microalgae on hydrolysate. Algal Res 59. https://doi.org/10.1016/j.algal.2021.102419

  • Song C, Hu X, Liu Z, Li S, Kitamura Y (2020) Combination of brewery wastewater purification and CO2 fixation with potential value-added ingredients production via different microalgae strains cultivation. J Clean Prod 268. https://doi.org/10.1016/j.jclepro.2020.122332

  • Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM (2021) Biomass utilization and production of biofuels from carbon neutral materials. Environ Pollut 276. https://doi.org/10.1016/j.envpol.2021.116731

  • Srivastava A, Kalwani M, Chakdar H, Pabbi S, Shukla P (2022) Biosynthesis and biotechnological interventions for commercial production of microalgal pigments: a review. Bioresour Technol 352. https://doi.org/10.1016/j.biortech.2022.127071

  • Sriyod K, Reungsang A, Plangklang P (2021) One-step multi enzyme pretreatment and biohydrogen production from chlorella sp. biomass. Int J Hydrog Energy 46. https://doi.org/10.1016/j.ijhydene.2021.09.232

  • Stanislaus MS, Zhang N, Yuan Y, Zheng H, Zhao C, Hu X, Zhu Q, Yang Y (2018) Improvement of biohydrogen production by optimization of pretreatment method and substrate to inoculum ratio from microalgal biomass and digested sludge. Renew Energy 127. https://doi.org/10.1016/j.renene.2018.05.022

  • Stiles WAV, Styles D, Chapman SP, Esteves S, Bywater A, Melville L, Silkina A, Lupatsch I, Fuentes Grünewald C, Lovitt R, Chaloner T, Bull A, Morris C, Llewellyn CA (2018) Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. Bioresour Technol 267. https://doi.org/10.1016/j.biortech.2018.07.100

  • Su Y, Jacobsen C (2021) Treatment of clean in place (CIP) wastewater using microalgae: nutrient upcycling and value-added byproducts production. Sci Total Environ 785. https://doi.org/10.1016/j.scitotenv.2021.147337

  • Suastes-Rivas JK, Hernández-Altamirano R, Mena-Cervantes VY, Barrios Gómez EJ, Chairez I (2020) Biodiesel production, through intensification and profitable distribution of fatty acid methyl esters by a microalgae-yeast co-culture, isolated from wastewater as a function of the nutrients’ composition of the culture media. Fuel 280. https://doi.org/10.1016/j.fuel.2020.118633

  • Sugumar S, Rajesh R, Kannan P, Venkatesan P (2020) Biodiesel production from the biomass of Dunaliella salina green microalgae using organic solvent. Mater Today Proc 33. https://doi.org/10.1016/j.matpr.2020.04.652

  • Sun Y, Li H, Andlib Z, Genie MG (2022) How do renewable energy and urbanization cause carbon emissions? Evidence from advanced panel estimation techniques. Renew Energy 185. https://doi.org/10.1016/j.renene.2021.12.112

  • Syakirah Talha N, Sulaiman S (2016) Overview of catalysts in biodiesel production, p 11. http://irep.iium.edu.my/id/eprint/50477

  • Tang DYY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL (2020) Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol 304. https://doi.org/10.1016/j.biortech.2020.122997

  • Teknologi J, Ahmad A, Muhammad S, Shah U, Buang A, Abdullah A (2016) Anaerobic co-cultivation of multi-algal species with oil palm empty fruit bunches for mill effluent treatment and biomethane production. J Teknol 78. https://doi.org/10.11113/jt.v78.8640

  • Tena M, Luque B, Perez M, Solera R (2020) Enhanced hydrogen production from sewage sludge by cofermentation with wine vinasse. Int J Hydrog Energy 45. https://doi.org/10.1016/j.ijhydene.2020.04.075

  • Tripathi S, Arora N, Gupta P, Pruthi PA, Poluri KM, Pruthi V (2019) Microalgae: an emerging source for mitigation of heavy metals and their potential implications for biodiesel production. Adv Biofuels. https://doi.org/10.1016/B978-0-08-102791-2.00004-0

  • Tripathi S, Choudhary S, Poluri KM (2021) Insights into lipid accumulation features of Coccomyxa sp. IITRSTKM4 under nutrient limitation regimes. Environ Technol Innov 24. https://doi.org/10.1016/j.eti.2021.101786

  • Tripathi S, Behera T, Poluri KM (2022) Biochemical insights into cadmium detoxification mechanism of Coccomyxa sp. IITRSTKM4. J Environ Chem Eng 10. https://doi.org/10.1016/j.jece.2022.108102

  • Tripathi S, Choudhary S, Meena A, Poluri KM (2023a) Carbon capture, storage, and usage with microalgae: a review. Environ Chem Lett 21. https://doi.org/10.1007/s10311-023-01609-y

  • Tripathi S, Kairamkonda M, Gupta P, Poluri KM (2023b) Dissecting the molecular mechanisms of producing biofuel and value-added products by cadmium tolerant microalgae as sustainable biorefinery approach. Chem Eng J 454. https://doi.org/10.1016/j.cej.2022.140068

  • Tsapekos P, Kougias PG, Alvarado-Morales M, Kovalovszki A, Corbière M, Angelidaki I (2018) Energy recovery from wastewater microalgae through anaerobic digestion process: methane potential, continuous reactor operation and modelling aspects. Biochem Eng J 139. https://doi.org/10.1016/j.bej.2018.08.004

  • Tsolakis N, Goldsmith AT, Aivazidou E, Kumar M (2023) Microalgae-based circular supply chain configurations using industry 4.0 technologies for pharmaceuticals. J Clean Prod 395. https://doi.org/10.1016/j.jclepro.2023.136397

  • Uggetti E, Puigagut J (2016) Photosynthetic membrane-less microbial fuel cells to enhance microalgal biomass concentration. Bioresour Technol 218. https://doi.org/10.1016/j.biortech.2016.07.062

  • Vargas-Estrada L, Longoria A, Okoye PU, Sebastian PJ (2021) Energy and nutrients recovery from wastewater cultivated microalgae: assessment of the impact of wastewater dilution on biogas yield. Bioresour Technol 341. https://doi.org/10.1016/j.biortech.2021.125755

  • Vassalle L, Díez-Montero R, Machado ATR, Moreira C, Ferrer I, Mota CR, Passos F (2020) Upflow anaerobic sludge blanket in microalgae-based sewage treatment: co-digestion for improving biogas production. Bioresour Technol 300. https://doi.org/10.1016/j.biortech.2019.122677

  • Venkata Subhash G, Rajvanshi M, Raja Krishna Kumar G, Shankar Sagaram U, Prasad V, Govindachary S, Dasgupta S (2022) Challenges in microalgal biofuel production: a perspective on techno economic feasibility under biorefinery stratagem. Bioresour Technol 343. https://doi.org/10.1016/j.biortech.2021.126155

  • Vishwakarma R, Dhaka V, Ariyadasa TU, Malik A (2022) Exploring algal technologies for a circular bio-based economy in rural sector. J Clean Prod 354. https://doi.org/10.1016/j.jclepro.2022.131653

  • Vu DL, Saurav K, Mylenko M, Ranglová K, Kuta J, Ewe D, Masojídek J, Hrouzek P (2019) In vitro bioaccessibility of selenoamino acids from selenium (se)-enriched Chlorella vulgaris biomass in comparison to selenized yeast; a se-enriched food supplement; and se-rich foods. Food Chem 279. https://doi.org/10.1016/j.foodchem.2018.12.004

  • Vuppaladadiyam AK, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davis RW, Abbas A, Ralph P, Fennell PS, Zhao M (2018) Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. ChemSusChem 11. https://doi.org/10.1002/cssc.201701611

  • Wang M, Lee E, Dilbeck MP, Liebelt M, Zhang Q, Ergas SJ (2017) Thermal pretreatment of microalgae for biomethane production: experimental studies, kinetics and energy analysis. J Chem Technol Biotechnol 92. https://doi.org/10.1002/jctb.5018

  • Wang S, Mukhambet Y, Esakkimuthu S, Abomohra AE (2022) Integrated microalgal biorefinery – Routes, energy, economic and environmental perspectives. J Clean Prod 348. https://doi.org/10.1016/j.jclepro.2022.131245

  • Wu H, Li J, Liao Q, Fu Q, Liu Z (2020a) Enhanced biohydrogen and biomethane production from Chlorella sp. with hydrothermal treatment. Energy Convers Manag 205. https://doi.org/10.1016/j.enconman.2019.112373

  • Wu H, Li J, Wang C, Liao Q, Fu Q, Liu Z (2020b) Sequent production of proteins and biogas from Chlorella sp. via CO2 assisted hydrothermal treatment and anaerobic digestion. J Clean Prod 277. https://doi.org/10.1016/j.jclepro.2020.123563

  • **a A, Cheng J, Ding L, Lin R, Song W, Zhou J, Cen K (2014) Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis. Appl Energy 120. https://doi.org/10.1016/j.apenergy.2014.01.045

  • Yang C, Li R, Zhang B, Qiu Q, Wang B, Yang H, Ding Y, Wang C (2019) Pyrolysis of microalgae: a critical review. Fuel Process Technol 186. https://doi.org/10.1016/j.fuproc.2018.12.012

  • You X, Yang L, Zhou X, Zhang Y (2022) Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: a review. Environ Res 209. https://doi.org/10.1016/j.envres.2022.112860

  • Yu KL, Show PL, Ong HC (2018) Biochar production from microalgae cultivation through pyrolysis as a sustainable carbon sequestration and biorefinery approach. Clean Techn Environ Policy 20. https://doi.org/10.1007/s10098-018-1521-7

  • Yu KL, Chen WH, Sheen HK, Chang JS, Lin CS, Ong HC, Show PL, Ling TC (2020a) Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction. Fuel 279. https://doi.org/10.1016/j.fuel.2020.118435

  • Yu KL, Chen WH, Sheen HK, Chang JS, Lin CS, Ong HC, Show PL, Ng EP, Ling TC (2020b) Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment. Renew Energy 156. https://doi.org/10.1016/j.renene.2020.04.064

  • Yu KL, Lee XJ, Ong HC, Chen WH, Chang JS, Lin CS, Show PL, Ling TC (2021) Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: equilibrium, kinetic and mechanism modeling. Environ Pollut 272. https://doi.org/10.1016/j.envpol.2020.115986

  • Yu J, Audu M, Myint MT, Cheng F, Jarvis JM, Jena U, Nirmalakhandan N, Brewer CE, Luo H (2022) Bio-crude oil production and valorization of hydrochar as anode material from hydrothermal liquefaction of algae grown on brackish dairy wastewater. Fuel Process Technol. https://doi.org/10.1016/j.fuproc.2021.107119

  • Zhao B, Su Y (2020) Macro assessment of microalgae-based CO2 sequestration: environmental and energy effects. Algal Res 51. https://doi.org/10.1016/j.algal.2020.102066

  • Zhu L, Li S, Hu T, Nugroho YK, Yin Z, Hu D, Chu R, Mo F, Liu C, Hiltunen E (2019) Effects of nitrogen source heterogeneity on nutrient removal and biodiesel production of mono- and mix-cultured microalgae. Energy Convers Manag 201. https://doi.org/10.1016/j.enconman.2019.112144

  • Zhu Q, Chen X, Song M, Li X, Shen Z (2022) Impacts of renewable electricity standard and renewable energy certificates on renewable energy investments and carbon emissions. J Environ Manag 306. https://doi.org/10.1016/j.jenvman.2022.114495

  • Zhuang D, He N, Khoo KS, Ng EP, Chew KW, Ling TC (2022) Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. Chemosphere 291. https://doi.org/10.1016/j.chemosphere.2021.132932

  • Zinkoné TR, Gifuni I, Lavenant L, Pruvost J, Marchal L (2018) Bead milling disruption kinetics of microalgae: process modeling, optimization and application to biomolecules recovery from Chlorella sorokiniana. Bioresour Technol 267. https://doi.org/10.1016/j.biortech.2018.07.080

Download references

Acknowledgements

SC acknowledges the fellowship provided by MHRD at IIT-Roorkee for the Ph.D. program. KMP appreciates the support received through Grants GKC-01/2016-17/212/NMCG-Research from NMCG-MoWR, Government of India, and BEST-18-KMP/IITR/109 from Bharat Energy Storage Pvt. Ltd. (BEST), India and SERB-STAR fellowship (STR/2022/000008) from SERB-DST, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Mohan Poluri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhary, S., Poluri, K.M. (2024). Microalgal-Based Biorefinery Approaches Toward a Sustainable Future. In: Verma, P. (eds) Industrial Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-97-1912-9_10

Download citation

Publish with us

Policies and ethics

Navigation