Silkworm for Cosmetic Application

  • Chapter
  • First Online:
Biomass-based Cosmetics

Abstract

The domesticated mulberry silkworm Bombyx mori L. and the wild non-mulberry silkworms are discussed in this article as potential sources of raw materials for cosmetics. Both families of silkworms produce cocoons, which are made up of the pupa and the two main proteins, fibroin and sericin. The product of the B. mori L. silkworm has the potential to be a better biomaterial for cosmetic raw materials than other alternatives. Each product is described in more detail, including its definition, producer, extraction process, and application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 196.87
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdou ES, Nagy KSA, Elsabee MZ (2008) Extraction and characterization of chitin and chitosan from local sources. Bioresour Technol 99:1359–1367

    Article  CAS  PubMed  Google Scholar 

  • Aburjai T, Natsheh FM (2003) Plants used in cosmetics. Phyther Res 17:987–1000

    Article  Google Scholar 

  • Acharya C, Ghosh SK, Kundu SC (2008) Silk fibroin protein from mulberry and non-mulberry silkworms: cytotoxicity, biocompatibility and kinetics of L929 murine fibroblast adhesion. J Mater Sci Mater Med 19:2827–2836

    Article  CAS  PubMed  Google Scholar 

  • Acharya C, Ghosh SK, Kundu SC (2009) Silk fibroin film from non-mulberry tropical tasar silkworms: a novel substrate for in vitro fibroblast culture. Acta Biomater 5:429–437

    Article  CAS  PubMed  Google Scholar 

  • Amiraliyan N, Nouri M, Kish MH (2009) Electrospinning of silk nanofibers. I. An investigation of nanofiber morphology and process optimization using response surface methodology. Fibers Polym 10:167–176

    Article  CAS  Google Scholar 

  • Aramwit P, Bang N (2014) The characteristics of bacterial nanocellulose gel releasing silk sericin for facial treatment. BMC Biotechnol 14:1–11

    Article  Google Scholar 

  • Aramwit P, Damrongsakkul S, Kanokpanont S, Srichana T (2010) Properties and antityrosinase activity of sericin from various extraction methods. Biotechnol Appl Biochem 55:91–98

    Article  CAS  PubMed  Google Scholar 

  • Aramwit P, Siritientong T, Srichana T (2012) Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Manag Res 30:217–224

    Article  CAS  PubMed  Google Scholar 

  • Asadpour S, Kargozar S, Moradi L et al (2020) Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications. Int J Biol Macromol 154:1285–1294

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay A, Chowdhury SK, Dey S et al (2019) Silk: a promising biomaterial opening new vistas towards affordable healthcare solutions. J Indian Inst Sci 99:445–487

    Article  Google Scholar 

  • Barbosa MA, Gonçalves IC, Moreno PMD et al (2017) 2.13 Chitosan? Compr Biomater II 2:279–305

    CAS  Google Scholar 

  • Battampara P, Nimisha Sathish T, Reddy R et al (2020) Properties of chitin and chitosan extracted from silkworm pupae and egg shells. Int J Biol Macromol 161:1296–1304

    Article  CAS  PubMed  Google Scholar 

  • Bharathi D (2018) The utilization of sericulture waste for the improvement of socio-economic welfare in India. Int J Sci Res 8:2319–7064

    Google Scholar 

  • Cao TT, Wang YJ, Zhang YQ (2013) Effect of strongly alkaline electrolyzed water on silk degumming and the physical properties of the fibroin fiber. PLoS One 8:8

    Google Scholar 

  • Cauchie H (1997) An attempt to estimate crustacean chitin production in the hydrosphere. In: Advances in chitin science. Jacques André Publisher, Lyon

    Google Scholar 

  • Chand S, Chand S, Raula B (2023) Usage of silkworm materials in various ground of science and research. J Nat Fibers 20

    Google Scholar 

  • Chen YL (2008) Preparation and characterization of water-soluble chitosan gel for skin hydration. Universiti Sains Malaysia, pp 8–12

    Google Scholar 

  • Chopra S, Chattopadhyay R, Gulrajani ML (1996) Low stress mechanical properties of silk fabric degummed by different methods. J Text Inst 87:542–553

    Article  CAS  Google Scholar 

  • Chouhan D, Mandal BB (2020) Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomater 103:24–51

    Article  CAS  PubMed  Google Scholar 

  • Chung DE, Kim HH, Kim MK et al (2015) Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk. Int J Biol Macromol 79:943–951

    Article  CAS  PubMed  Google Scholar 

  • Cristiano L, Guagni M (2022) Zooceuticals and cosmetic ingredients derived from animals. Cosmetics 9

    Google Scholar 

  • Czechowska-Biskup R, JarosiÅ„ska D, Rokita B et al (2012) Determination of degree of deacetylation of chitosan—comparision of methods. Prog Chem Appl Chitin its Deriv 2012:5–20

    Google Scholar 

  • Da Silva TL, Da Silva AC, Ribani M et al (2014) Evaluation of molecular weight distribution of sericin in solutions concentrated via precipitation by ethanol and precipitation by freezing/thawing. Chem Eng Trans 38:103–108

    Google Scholar 

  • Dash R, Mukherjee S, Kundu SC (2006) Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, Antheraea mylitta. Int J Biol Macromol 38:255–258

    Article  CAS  PubMed  Google Scholar 

  • Dash R, Ghosh SK, Kaplan DL, Kundu SC (2007) Purification and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comp Biochem Physiol B Biochem Mol Biol 147:129–134

    Article  PubMed  Google Scholar 

  • Dash R, Acharya C, Bindu PC, Kundu SC (2008) Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. J Biochem Mol Biol 41:236–241

    CAS  Google Scholar 

  • Dash BC, Mandal BB, Kundu SC (2009) Silk gland sericin protein membranes: fabrication and characterization for potential biotechnological applications. J Biotechnol 144:321–329

    Article  CAS  PubMed  Google Scholar 

  • Endrawati YC, Solihin DD, Suryani A, Subyakto S (2017) Optimasi Rendemen fibroin ulat Sutera Bombyx mori L. dan Attacus atlas L dengan response surface methodology. Agritech 37:205

    Article  Google Scholar 

  • Fatahian A, Fatahian E, Fatahian H et al (2021) A critical review on application of silk sericin and its mechanical properties in various industries. J Res Appl Mech Eng 9:2229–2152

    Google Scholar 

  • Fatima N, Anwar S, Jaffar S et al (2020) An insight into animal and plant halal ingredients used in cosmetics. Int J Innov Creat Chang 14:2020

    Google Scholar 

  • Freddi G, Mossotti R, Innocenti R (2003) Degumming of silk fabric with several proteases. J Biotechnol 106:101–112

    Article  CAS  PubMed  Google Scholar 

  • Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A et al (2020) Silk fibroin for skin injury repair: where do things stand? Adv Drug Deliv Rev 153:28–53

    Article  CAS  PubMed  Google Scholar 

  • Ghormade V, Pathan EK, Deshpande MV (2017) Can fungi compete with marine sources for chitosan production? Int J Biol Macromol 104:1415–1421

    Article  CAS  PubMed  Google Scholar 

  • Gingyin Y, Cui H (1996) Some features of silk-produceing moths. Tropicultura 14:30–33

    Google Scholar 

  • Gulrajani ML (1992) Degumming of silk. Rev Prog Color Relat Top 22:79–89

    CAS  Google Scholar 

  • Gupta D, Agrawal A, Chaudhary H et al (2013) Cleaner process for extraction of sericin using infrared. J Clean Prod 52:488–494

    Article  CAS  Google Scholar 

  • Hahn T, Tafi E, Paul A et al (2020) Current state of chitin purification and chitosan production from insects. J Chem Technol Biotechnol 95:2775–2795

    Article  CAS  Google Scholar 

  • Hardani PT, Perwito D, Mayzika NA (2022) Isolasi Kitin Dan Kitosan Dari Berbagai Sumber Bahan Alam. SNHRP 3:469–475

    Google Scholar 

  • Holland C, Numata K, Rnjak-Kovacina J, Seib FP (2019) The biomedical use of silk: past, present, future. Adv Healthc Mater 8:e1800465

    Article  PubMed  Google Scholar 

  • Jaiswal KK, Banerjee I, Mayookha VP (2021) Recent trends in the development and diversification of sericulture natural products for innovative and sustainable applications. Bioresour Technol Rep 13:100614

    Article  CAS  Google Scholar 

  • Jena K, Pandey JP, Kumari R et al (2018) Free radical scavenging potential of sericin obtained from various ecoraces of tasar cocoons and its cosmeceuticals implication, vol 120. Elsevier B.V, p 255

    Google Scholar 

  • Jo YY, Kweon HY, Kim DW et al (2021) Silk sericin application increases bone morphogenic protein-2/4 expression via a toll-like receptor-mediated pathway. Int J Biol Macromol 190:607–617

    Article  CAS  PubMed  Google Scholar 

  • Ke CL, Deng FS, Chuang CY, Lin CH (2021) Antimicrobial actions and applications of chitosan. Polymers (Basel) 13

    Google Scholar 

  • Khayrova A, Lopatin S, Varlamov V (2021) Obtaining chitin, chitosan and their melanin complexes from insects. Int J Biol Macromol 167:1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Kitisin T, Maneekan P, Luplertlop N (2013) In-vitro characterization of silk Sericin as an anti-aging agent. J Agric Sci 5:54–62

    Google Scholar 

  • Kumar Pal A, Das A, Katiyar V (2016) Chitosan from Muga silkworms (Antheraea assamensis) and its influence on thermal degradation behavior of poly(lactic acid) based biocomposite films. J Appl Polym Sci 133:1–15

    Article  Google Scholar 

  • Kumari S, Rath PK (2014) Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales. Procedia Mater Sci 6:482–489

    Article  CAS  Google Scholar 

  • Kundu B, Kundu SC (2013) Bio-inspired fabrication of fibroin cryogels from the muga silkworm Antheraea assamensis for liver tissue engineering. Biomed Mater 8:8

    Article  Google Scholar 

  • Kunz RI, Brancalhão RMC, Ribeiro LDFC, Natali MRM (2016) Silkworm sericin: properties and biomedical applications. Biomed Res Int 2016

    Google Scholar 

  • Li B, Zhang J, Bu F, **a W (2013) Determination of chitosan with a modified acid hydrolysis and HPLC method. Carbohydr Res 366:50–54

    Article  CAS  PubMed  Google Scholar 

  • Lujerdean C, Baci GM, Cucu AA, Dezmirean DS (2022) The contribution of silk fibroin in biomedical engineering. Insects 13

    Google Scholar 

  • Mahmoodi NM, Arami M, Mazaheri F, Rahimi S (2010) Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. J Clean Prod 18:146–151

    Article  CAS  Google Scholar 

  • Mandal BB, Kundu SC (2008) A novel method for dissolution and stabilization of non-mulberry silk gland protein fibroin using anionic surfactant sodium dodecyl sulfate. Biotechnol Bioeng 99:1482–1489

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Mora C, Mrowiec A, García-Vizcaíno EM et al (2012) Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun. PLoS One 7:e42271

    Article  PubMed  PubMed Central  Google Scholar 

  • Melke J, Midha S, Ghosh S et al (2016) Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 31:1–16

    Article  CAS  PubMed  Google Scholar 

  • Miguel SP, Simões D, Moreira AF et al (2019) Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications. Int J Biol Macromol 121:524–535

    Article  CAS  PubMed  Google Scholar 

  • Milusheva RY, Rashidova SS (2022) Obtaining chitosan nanoparticles from Bombyx mori. Russ Chem Bull 71:232–239

    Article  CAS  Google Scholar 

  • Mohammed MH, Williams PA, Tverezovskaya O (2013) Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocoll 31:166–171

    Article  CAS  Google Scholar 

  • Møller P, Wallin H, Knudsen LE (1996) Oxidative stress associated with exercise, psychological stress and life-style factors. Chem Biol Interact 102:17–36

    Article  PubMed  Google Scholar 

  • Mondal M, Trivedy K, Kumar SN (2007) The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn,—a review. Caspian J Env Sci 20:109–120

    Google Scholar 

  • Mu X, Fitzpatrick V, Kaplan DL (2020) From silk spinning to 3D printing: polymer manufacturing using directed hierarchical molecular assembly. Adv Healthc Mater 9:1–17

    Article  Google Scholar 

  • Murtozaevna IN, Sunnatovich KS, Muhiddin o’g’li MN et al (2021) Investigation the structure of defective areas of cocoon shells and their influence on the process of steaming. Ann Rom Soc Cell Biol 25:15097–15106

    Google Scholar 

  • Nagura M, Ohnishi R, Gitoh Y, Ohkoshi Y (2001) Structures and physical properties of cross-linked sericin membranes. J Sericultural Sci Japan 70:149–153

    CAS  Google Scholar 

  • Nikitakis J, Breslawec HP, Cosmetic T and FA (2013) International cosmetic ingredient dictionary and handbook, 15th ed. Personal Care Products Council, Washington, DC

    Google Scholar 

  • Pachiappan P, Mohanraj P, Mahalingam CA et al (2016) In vitro evaluation of antioxidant activity of bioproducts extracted from silkworm Pupae. Environ We Int J Sci Tech 11:33–39

    Google Scholar 

  • Padamwar MN, Pawar AP (2004) Silk sericin and its applications: a review. J Sci Ind Res (India) 63:323–329

    CAS  Google Scholar 

  • Patel RJ, Modasiya MK (2011) Sericin-pharmaceutical applications. Int J Res Pharm Biomed Sci 2:913–917

    Google Scholar 

  • Patil PP, Reagan MR, Bohara RA (2020) Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. Int J Biol Macromol 164:4613–4627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulino AT, Minasse FAS, Guilherme MR et al (2006) Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. J Colloid Interface Sci 301:479–487

    Article  CAS  PubMed  Google Scholar 

  • Priyadharshini P, Joncy M (2016) Sericigenous insects. J Int Acad Res Multidiscip 4:2320–5083

    Google Scholar 

  • Rashidova SS, Milusheva RY (2009) Bombyx mori chitin and chitosan: synthesis, properties, and use. FAN:220–246

    Google Scholar 

  • Reddy N, Aramwit P (2021) Sustainable uses of by products from silk processing. Wiley-VCH, Germany

    Book  Google Scholar 

  • Rockwood DN, Preda RC, Yücel T et al (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6:1612–1631

    Article  CAS  PubMed  Google Scholar 

  • Sahu N, Pal S, Sapru S et al (2016) Non-mulberry and Mulberry silk protein sericins as potential media supplement for animal cell culture. Biomed Res Int 2016

    Google Scholar 

  • Sangwong G, Sumida M, Sutthikhum V (2016) Antioxidant activity of chemically and enzymatically modified sericin extracted from cocoons of Bombyx mori. Biocatal Agric Biotechnol 5:155–161

    Article  Google Scholar 

  • Sashina ES, Bochek AM, Novoselov NP, Kirichenko DA (2006) Structure and solubility of natural silk fibroin. Russ J Appl Chem 79:869–876

    Article  CAS  Google Scholar 

  • Savithri GSP (2016) Mulberry and silkworm as a healthy foodstuff. Int J Recent Sci Res 7:12244–12246

    Google Scholar 

  • Seves A, Romanò M, Maifreni T et al (1998) The microbial degradation of silk: a laboratory investigation. Int Biodeterior Biodegrad 42:203–211

    Article  CAS  Google Scholar 

  • Soumya M, Reddy Aswartha H, Nageswari G, Ven Katappa B (2017) Silkworm (Bombyx mori) and its constituents: a fascinating insect in science and research. Artic J Entomol Zool Stud 5(5): 1701–1705

    Google Scholar 

  • Suresh HN, Mahalingam CA, Pallavi (2012) Amount of chitin, chitosan and chitosan based on chitin weight in pure races of multivoltine and bivoltine silkworm pupae Bombyx mori L . Int J Sci Nat 3:214–216

    Google Scholar 

  • Teramoto H, Kameda T, Tamada Y (2008) Preparation of gel film from Bombyx mori silk sericin and its characterization as a wound dressing. Biosci Biotechnol Biochem 72:3189–3196

    Article  CAS  PubMed  Google Scholar 

  • Teuschl AH, van Griensven M, Redl H (2014) Sericin removal from raw Bombyx mori silk scaffolds of high hierarchical order. Tissue Eng Part C 20:431

    Article  CAS  Google Scholar 

  • Thirupathaiah Y, Chandel AK, Sivaprasad V (2018) Potential applications of enzymes in sericulture. In: Sustainable biotechnology—enzymatic resources of renewable energy. Springer International Publishing, Karnataka, India, pp 463–472

    Chapter  Google Scholar 

  • Ulfa M, Syahruni R, Deppong K (2021) Uji Aktivitas Ekstrak Air Limbah Kokon Ulat Sutera (Bombyx mori L.) Sebagai Pelembab. Medfarm J Farm dan Kesehatan 10:29–38

    Article  Google Scholar 

  • Wang YS, Shelomi M (2017) Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 6(10):91

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YJ, Zhag YQ (2011) Three-layered sericins around the silk fibroin fiber from Bombyx mori cocoon and their amino acid composition. Adv Mater Res 175–176:158–163

    Article  Google Scholar 

  • Wang F, Guo C, Yang Q et al (2021) Protein composites from silkworm cocoons as versatile biomaterials. Acta Biomater 121:180–192

    Article  CAS  PubMed  Google Scholar 

  • Win NN, Stevens WF (2001) Shrimp chitin as substrate for fungal chitin deacetylase. Appl Microbiol Biotechnol 57:334–341

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Nakao H, Takasu Y, Tsubouchi K (2001) Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Mater Sci Eng C Biomim Supramol Syst 14:41–46

    Article  Google Scholar 

  • Ye X, Zhao S, Wu M et al (2021) Role of sericin 1 in the immune system of silkworms revealed by transcriptomic and proteomic analyses after gene knockout. FEBS Open Bio 11:2304–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonesi M, Garcia-Nieto M, Guinea GV et al (2021) Silk fibroin: an ancient material for repairing the injured nervous system. Pharmaceutics 13(3):429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YQ (2002) Applications of natural silk protein sericin in biomaterials. Biotechnol Adv 20:91–100

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Chen J, Magoshi J et al (2002) Inorganic composition and thermal properties of cocoon fiber. Int J Soc Mater Eng Resour 10:113–116

    Article  CAS  Google Scholar 

  • Zhang J, Huang H, Ju R et al (2017) In vivo biocompatibility and hemocompatibility of a polytetrafluoroethylene small diameter vascular graft modified with sulfonated silk fibroin. Am J Surg 213:87–93

    Article  PubMed  Google Scholar 

  • Zhang X, Bao H, Donley C et al (2019) Thiolation and characterization of regenerated Bombyx mori silk fibroin films with reduced glutathione. BMC Chem 13:1–10

    Article  Google Scholar 

  • Zhao X, Vázquez-Gutiérrez JL, Johansson DP et al (2016) Yellow mealworm protein for food purposes—extraction and functional properties. PLoS One 11:1–17

    Google Scholar 

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Retno Agustarini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heryati, Y., Sarwono, K.A., Riendriasari, S.D., Andadari, L., Agustarini, R. (2024). Silkworm for Cosmetic Application. In: Arung, E.T., et al. Biomass-based Cosmetics. Springer, Singapore. https://doi.org/10.1007/978-981-97-1908-2_6

Download citation

Publish with us

Policies and ethics

Navigation