Multi-omics in Gut Microbiome

  • Chapter
  • First Online:
Multi-Omics Analysis of the Human Microbiome
  • 139 Accesses

Abstract

The microbiome of the human gut, a complex assembly of the microorganisms inhabiting the digestive tract, exerts a profound impact on human health. Influenced by various factors like diet, environment, and birth methods, this ecosystem is under intense scrutiny for therapeutic potentials. Advanced investigative techniques enable innovative approaches to harness the microbiome for health enhancement. Metagenomics, a transformative tool in gut microbiome exploration, uncovers genetic profiles, disease links, and functional roles. It divulges diverse microbes, distinct enterotypes, the enigmatic gut virome, antibiotic resistance dynamics, and disease-related dysbiosis implications. Integrating metagenomics with other omics methods is pivotal for a comprehensive understanding of gut microbiota gene expression and function, sha** its impact on health. Metatranscriptomics, elucidating gut microbiota responses to diets, diseases, and medications, reveals dynamic microbial adaptations, immune interactions, and disease associations. It sheds light on respiratory conditions, cancer, and complex interactions between gut microbes and human health. Despite challenges in sample diversity, metaproteomics contributes significantly to understand gut microbiome functionalities in diseases like type 1 diabetes and inflammatory bowel disease (IBD). Advancements in technology aid in deciphering microbial roles within the gut ecosystem. On the other hand, metabolomics, through diverse metabolite analyses, aids precision medicine by diagnosing diseases, identifying therapeutic targets, and discovering treatment monitoring biomarkers. Dysbiosis in the microbiota of the gut is linked to IBD, irritable bowel syndrome (IBS), Type 2 diabetes mellitus (T2M), and obesity underscores the importance of understanding microbial interactions for targeted therapies. Ongoing research endeavors seek to elucidate these connections for innovative therapeutic strategies. Leveraging multi-omics methodologies can help pinpoint small molecules and bacterial peptides that impact the host’s physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagard K, Ma J, Antony K et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237–265

    Google Scholar 

  • Abu-Ali GS et al (2018) Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nat Microbiol 3:356–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abubucker S, Segata N, Goll J et al (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8(6):e1002358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adak A, Khan MR (2019) An insight into gut microbiota and its functionalities. Cell Mol Life Sci 76(3):473–493. https://doi.org/10.1007/s00018-018-2943-4. Epub 2018 Oct 13. PMID: 30317530

    Article  CAS  PubMed  Google Scholar 

  • Almeida A et al (2021) A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol 39:105–114

    Article  CAS  PubMed  Google Scholar 

  • Andrews MC et al (2021) Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat Med 27:1432–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Nature 307:1915–1920

    Google Scholar 

  • Bao G, Wang M, Doak TG, Ye Y (2015) Strand-specific community RNA-seq reveals prevalent and dynamic antisense transcription in human gut microbiota. Front Microbiol 6:896

    Article  PubMed  PubMed Central  Google Scholar 

  • Barr JJ, Auro R, Furlan M et al (2013) Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 110:10771–10776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashiardes S, Zilberman-Schapira G, Elinav E (2016) Use of metatranscriptomics in microbiome research. Bioinform Biol Insights 10:19–25. https://doi.org/10.4137/BBI.S34610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgart DC, Sandborn WJ (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369(9573):1641–1657

    Article  CAS  PubMed  Google Scholar 

  • BelizĂ¡rio JE, Napolitano M (2015) Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol 6:1050. https://doi.org/10.3389/fmicb.2015.01050. PMID: 26500616; PMCID: PMC4594012

    Article  PubMed  PubMed Central  Google Scholar 

  • Bikel S, Valdez-Lara A, Cornejo-Granados F, Rico K, Canizales-Quinteros S et al (2015) Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J 13:390–401. https://doi.org/10.1016/j.csbj.2015.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaser M, Bork P, Fraser C, Knight R, Wang J (2013) The microbiome explored: recent insights and future challenges. Nat Rev Microbiol 11:213–217

    Article  CAS  PubMed  Google Scholar 

  • Blaser MJ et al (2021) Lessons learned from the prenatal microbiome controversy. Microbiome 9:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Blottière HM, de Vos WM, Ehrlich SD, DorĂ© J (2013) Human intestinal metagenomics: state of the art and future. Curr Opin Microbiol 16:232–239

    Article  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, Felts B, Mahaffy JM, Mueller J, Nulton J, Rayhawk S et al (2008) Viral diversity and dynamics in an infant gut. Res Microbiol 159:367–373

    Article  CAS  PubMed  Google Scholar 

  • Bull MJ, Plummer NT (2014) Part 1: the human gut microbiome in health and disease. Integr Med (Encinitas) 13(6):17–22. PMID: 26770121; PMCID: PMC4566439

    PubMed  Google Scholar 

  • Carvalho FA, Koren O, Goodrich JK et al (2012) Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 12(2):139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L et al (2021) The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184:2302–2315.e2312

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdovai L (2010) Functional metagenomics: recent advances and future challenges. Biotechnol Genet Eng Rev 26:335–352

    Article  PubMed  Google Scholar 

  • Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clish CB (2015) Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb Mol Case Stud 1(1):a000588. https://doi.org/10.1101/mcs.a000588

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S, GarcĂ­a-GĂ³mez JM, Terol J, TalĂ³n M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Cresci GA, Bawden E (2015) Gut microbiome: what we do and don’t know. Nutr Clin Pract. 30(6):734–746. https://doi.org/10.1177/0884533615609899. Epub 2015 Oct 8. PMID: 26449893; PMCID: PMC4838018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullender TC, Chassaing B, Janzon A et al (2013) Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14(5):571–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28(10):1221–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377

    Article  PubMed  Google Scholar 

  • David LA et al (2014a) Host lifestyle affects human microbiota on daily timescales. Genome Biol 15:R89

    Article  PubMed  PubMed Central  Google Scholar 

  • David LA et al (2014b) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563

    Article  CAS  PubMed  Google Scholar 

  • de Martel C et al (2020) Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health 8:e180–e190

    Article  PubMed  Google Scholar 

  • den Besten G et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    Article  Google Scholar 

  • DiGiulio DB (2012) Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med 17:2–11

    Article  PubMed  Google Scholar 

  • Ding T, Schloss PD (2014) Dynamics and associations of microbial community types across the human body. Nature 509(7500):357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobell C (1920) The discovery of intestinal protozoa in man. Proc R Soc Med 13:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durot M, Bourguignon PY, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33(1):164–190

    Article  CAS  PubMed  Google Scholar 

  • Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, Shah M, Halfvarson J, Tysk C, Henrissat B, Raes J, Verberkmoes NC, Fraser CM, Hettich RL, Jansson JK (2012) Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS One 7:e49138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar-Zepeda A, Vera-Ponce de LeĂ³n A, Sanchez-Flores A (2015) The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet 6:348

    Article  PubMed  PubMed Central  Google Scholar 

  • Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL et al (2013) The long-term stability of the human gut microbiota. Science 341(6141):1237439

    Article  PubMed  PubMed Central  Google Scholar 

  • Falony G et al (2016) Population-level analysis of gut microbiome variation. Science 352:560–564

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Cui X (2011) Design and validation issues in RNA-seq experiments. Brief Bioinform 12(3):280–287

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Baky MH, von Bergen M, Hegazi NM (2023) The use of omics in monitoring food gut microbiota interaction outcomes: a review of novel trends and technologies. Curr Opin Food Sci 52:101064. https://doi.org/10.1016/j.cofs.2023.101064

    Article  CAS  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • Felix RS, Colleoni GWB, Caballero OL et al (2009) SAGE analysis highlights the importance of p53csv, ddx5, mapkapk2 and ranbp2 to multiple myeloma tumorigenesis. Cancer Lett 278(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM (2014) Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 4:E121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filiatrault MJ (2011) Progress in prokaryotic transcriptomics. Curr Opin Microbiol 14:579–586

    Article  CAS  PubMed  Google Scholar 

  • Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2):244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franzosa EA, Morgan XC, Segata N et al (2014) Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci USA 111(22):E2329–E2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda S, Toh H, Hase K et al (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547

    Article  CAS  PubMed  Google Scholar 

  • Gabor EM, Alkema WB, Janssen DB (2004) Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ Microbiol 6:879–886

    Article  CAS  PubMed  Google Scholar 

  • Gallardo-Becerra L et al (2020) Metatranscriptomic analysis to define the Secrebiome, and 16S rRNA profiling of the gut microbiome in obesity and metabolic syndrome of Mexican children. Microb Cell Factories 19:61

    Article  CAS  Google Scholar 

  • Garmendia L, Hernandez A, Sanchez MB, Martinez JL (2012) Metagenomics and antibiotics. Clin Microbiol Infect 18:27–31

    Article  CAS  PubMed  Google Scholar 

  • Garrett WS (2015) Cancer and the microbiota. Science 348:80–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavin PG, Mullaney JA, Loo D, Cao KL, Gottlieb PA, Hill MM, Zipris D, Hamilton-Williams EE (2018) Intestinal metaproteomics reveals host-microbiota interactions in subjects at risk for type 1 diabetes. Diabetes Care 41:2178–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georg J, Voss B, Scholz I, Mitschke J, Wilde A, Hess WR (2009) Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol Syst Biol 5:305

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerszten RE, Wang TJ (2008) The search for new cardiovascular biomarkers. Nature 451:949–952

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Chan C-KK (2016) Analysis of RNA-seq data using TopHat and Cufflinks. Methods Mol Biol 1374:339–361

    Article  CAS  PubMed  Google Scholar 

  • Ghoshal UC, Shukla R, Ghoshal U, Gwee KA, Ng SC, Quigley FM (2012) The gut microbiota and irritable bowel syndrome: friend or foe? Int J Inflam 2012:151085

    PubMed  PubMed Central  Google Scholar 

  • Giannoukos G, Ciulla DM, Huang K et al (2012) Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol 13(3):R23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert JA, Field D, Huang Y, Edwards R, Li W, Gilna P, Joint I (2008) Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3(8):e3042. https://doi.org/10.1371/journal.pone.0003042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F (2010) Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc 2010(1):db.rot5368

    Article  Google Scholar 

  • Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, Gould TJ, Clayton JB, Johnson TJ, Hunter R et al (2016) Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol 34(9):942–949

    Article  CAS  PubMed  Google Scholar 

  • Gosalbes MJ, DurbĂ¡n A, Pignatelli M et al (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6(3):e17447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granata I et al (2020) Duodenal metatranscriptomics to define human and microbial functional alterations associated with severe obesity: a pilot study. Microorganisms 8:1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361(9356):512–519

    Article  PubMed  Google Scholar 

  • Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 6(4):295–308

    Article  Google Scholar 

  • Gupta A, Singh V, Mani I (2022) Dysbiosis of human microbiome and infectious diseases. Prog Mol Biol Transl Sci 192(1):33–51. https://doi.org/10.1016/bs.pmbts.2022.06.016

    Article  CAS  PubMed  Google Scholar 

  • Haft DH et al (2018) RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46:D851–D860. https://doi.org/10.1093/nar/gkx1068

    Article  CAS  PubMed  Google Scholar 

  • Haiser HJ, Turnbaugh PJ (2012) Is it time for a metagenomic basis of therapeutics? Science 336(6086):1253–1255

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  PubMed  Google Scholar 

  • Harrigan GG, Goodacre R (2003) Metabolic profiling: its role in biomarker discovery and gene function analysis. Springer, Boston, MA

    Google Scholar 

  • Harris MA, Reddy CA, Carter GR (1976) Anaerobic bacteria from the large intestine of mice. Appl Environ Microbiol 31(6):907–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatch A et al (2019) A robust metatranscriptomic technology for population-scale studies of diet, gut microbiome, and human health. Int J Genomics 2019:1718741

    Article  PubMed  PubMed Central  Google Scholar 

  • Heintz-Buschart A et al (2016) Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat Microbiol 2:16180

    Article  CAS  PubMed  Google Scholar 

  • Hiergeist A, Glasner J, Reischl U, Gessner A (2015) Analyses of intestinal microbiota: culture versus sequencing. ILAR J 56(2):228–240

    Article  CAS  PubMed  Google Scholar 

  • Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6(17):4716–4723

    Article  CAS  PubMed  Google Scholar 

  • Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature 486:215–221

    Article  Google Scholar 

  • Hunter P (2013) The secret garden’s gardeners: research increasingly appreciates the crucial role of gut viruses for human health and disease. EMBO Rep 14:683–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeanty C, Longrois D, Mertes P-M, Wagner DR, Devaux Y (2010) An optimized protocol for microarray validation by quantitative PCR using amplified amino allyl labeled RNA. BMC Genomics 11:542

    Article  PubMed  PubMed Central  Google Scholar 

  • JimĂ©nez E, FernĂ¡ndes L, MarĂ­n M et al (2005) Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 51:270–274

    Article  PubMed  Google Scholar 

  • Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A 105:13580–13585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, Perry T, Kao D, Mason AL, Madsen KL et al (2016) Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol 7(459):459

    PubMed  PubMed Central  Google Scholar 

  • Kelder T, Stroeve JH, Bijlsma S, Radonjic M, Roeselers G (2014) Correlation network analysis reveals relationships between diet-induced changes in human gut microbiota and metabolic health. Nutr Diabetes 4:e122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khosravi A, Mazmanian SK (2013) Disruption of the gut microbiome as a risk factor for microbial infections. Curr Opin Microbiol 16:221–227. https://doi.org/10.1016/j.mib.2013.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the develo** infant gut microbiome. Proc Natl Acad Sci USA 108(Suppl 1):4578–4585

    Article  CAS  PubMed  Google Scholar 

  • Kolmeder CA, de Been M, Nikkila J, Ritamo I, Matto J, Valmu L, Salojarvi J, Palva A, Salonen A, de Vos WM (2012) Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS One 7:e29913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koropatkin NM, Cameron EA, Martens EC (2012) How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 10(5):323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lederberg J (2001) Ome Sweet’Omics—a genealogical treasury of words. Scientist

    Google Scholar 

  • Lee SW et al (2016) Metagenome and metatranscriptome profiling of moderate and severe COPD sputum in Taiwanese Han males. PLoS One 11:e0159066

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee PY, Chin SF, Neoh HM, Jamal R (2017) Metaproteomic analysis of human gut microbiota: where are we heading? J Biomed Sci 24:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann T, Schallert K, Vilchez-Vargas R, Benndorf D, Puttker S, Sydor S, Schulz C, Bechmann L, Canbay A, Heidrich B, Reichl U, Link A, Heyer R (2019) Metaproteomics of fecal samples of Crohn’s disease and ulcerative colitis. J Proteome 201:93–103

    Article  CAS  Google Scholar 

  • Lepage P, Leclerc MC, Joossens M, Mondot S, Blottière HM, Raes J, Ehrlich D, DorĂ© J (2013) A metagenomic insight into our gut’s microbiome. Gut 62:146–158

    Article  PubMed  Google Scholar 

  • Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023. https://doi.org/10.1038/4441022a

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008a) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS et al (2008b) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LL, McCorkle SR, Monchy S, Taghavi S, van der Lelie D (2009) Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol Biofuels 2:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, LeBlanc J, Elashoff D, McHardy I, Tong M, Roth B, Ippoliti A, Barron G, McGovern D, McDonald K, Newberry R, Graeber T, Horvath S, Goodglick L, Braun J (2016) Microgeographic proteomic networks of the human colonic mucosa and their association with inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 2:567–583

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P et al (2021) Gut microbiota dysbiosis is associated with elevated bile acids in Parkinson’s disease. Meta 11:29

    CAS  Google Scholar 

  • Li J et al (2022) Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: findings from a longitudinal cohort of US men. Gut 71:724–733

    Article  CAS  PubMed  Google Scholar 

  • Lim YW et al (2013) Metagenomics and metatranscriptomics: windows on CF-associated viral and microbial communities. J Cyst Fibros 12:154–164

    Article  CAS  PubMed  Google Scholar 

  • Liu X (2016) Microbiome. Yale J Biol Med 89(3):275–276. PMCID: PMC5045136

    PubMed Central  Google Scholar 

  • Lloyd-Price J et al (2019) Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569:655–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W et al (2021) Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men. Genome Med 13:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier TV, Lucio M, Lee LH, Verberkmoes NC, Brislawn CJ, Bernhardt J, Lamendella R, McDermott JE, Bergeron N, Heinzmann SS, Morton JT, Gonzalez A, Ackermann G, Knight R, Riedel K, Krauss RM, Schmitt-Kopplin P, Jansson JK (2017) Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. MBio 8

    Google Scholar 

  • Mandal RS, Saha S, Das S (2015) Metagenomic surveys of gut microbiota. Genomics Proteomics Bioinformatics 13(3):148–158. https://doi.org/10.1016/j.gpb.2015.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Mani I (2020a) Metagenomics approach for bioremediation: challenges and perspectives. In: Pandey VC, Singh V (eds) Bioremediation of pollutants. Elsevier, pp 275–285., ISBN 9780128190258. https://doi.org/10.1016/B978-0-12-819025-8.00012-0

    Chapter  Google Scholar 

  • Mani I (2020b) Current status and challenges of DNA sequencing. In: Singh V (ed) Advances in synthetic biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-0081-7_5

    Chapter  Google Scholar 

  • Marchesi JR (2010) Prokaryotic and eukaryotic diversity of the human gut. Adv Appl Microbiol 72(72):43–62

    Article  PubMed  Google Scholar 

  • Markowitz VM, Chen IM, Chu K, Szeto E, Palaniappan K, Grechkin Y et al (2012) IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res 40:D123–D129

    Article  CAS  PubMed  Google Scholar 

  • MartĂ­n R, JimĂ©nez E, Heilig H, FernĂ¡ndez L, MarĂ­n ML, Zoetendal EG, RodrĂ­guez JM (2009) Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 75:965–969

    Article  PubMed  Google Scholar 

  • Martins-de-Souza D (2014) Proteomics, metabolomics, and protein interactomics in the characterization of the molecular features of major depressive disorder. Dialogues Clin Neurosci 16:63–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuoka K, Kanai T (2015) The gut microbiota and inflammatory bowel disease. Semin Immunopathol 37:47–55

    Article  CAS  PubMed  Google Scholar 

  • Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152(1–2):39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNulty NP et al (2011) The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 3:106ra106

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta RS et al (2018) Stability of the human faecal microbiome in a cohort of adult men. Nat Microbiol 3:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills RH, Vazquez-Baeza Y, Zhu Q, Jiang L, Gaffney J, Humphrey G, Smarr L, Knight R, Gonzalez DJ (2019) Evaluating metagenomic prediction of the metaproteome in a 45-year study of a patient with Crohn’s disease. mSystems 4(1):e00337-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Milne SB, Mathews TP, Myers DS, Ivanova PT, Brown HA (2013) Sum of the parts: mass spectrometry-based metabolomics. Biochemistry (Mosc) 52:3829–3840. https://doi.org/10.1021/bi400060e

    Article  CAS  Google Scholar 

  • Moles L, Gomez M, Heilig H, Bustos G, Fuentes S, de Vos W, FernĂ¡ndez L, RodrĂ­guez JM, JimĂ©nez E (2013) Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first months of life. PLoS One 8:1–13

    Article  Google Scholar 

  • Mondot S, Lepage P (2016) The human gut microbiome and its dysfunctions through the meta-omics prism. Ann N Y Acad Sci 1372:9–19

    Article  PubMed  Google Scholar 

  • Morgan XC, Huttenhower C (2012) Chapter 12: human microbiome analysis. PLoS Comput Biol 8(12):e1002808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muth T, Behne A, Heyer R, Kohrs F, Benndorf D, Hoffmann M, Lehteva M, Reichl U, Martens L, Rapp E (2015) The MetaProteomeAnalyzer: a powerful open-source software suite for metaproteomics data analysis and interpretation. J Proteome Res 14:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056. https://doi.org/10.1038/4551054a

    Article  CAS  PubMed  Google Scholar 

  • O’Leary NA et al (2015) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745. https://doi.org/10.1093/nar/gkv1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi Y, Hirayama A, Ishikawa T, Nakamura S, Shimizu K, Ueno Y, Tomita M, Soga T (2008) Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOF-MS. Mol BioSyst 4(2):135–114

    Article  CAS  PubMed  Google Scholar 

  • Ojala T, Kankuri E, Kankainen M (2023) Understanding human health through metatranscriptomics. Trends Mol Med 29(5):376–389. https://doi.org/10.1016/j.molmed.2023.02.002

    Article  PubMed  Google Scholar 

  • Ouwehand A, Isolauri E, Salminen S (2002) The role of the intestinal microflora for the development of the immune system in early childhood. Eur J Nutr 41(Suppl 1):I32–I37

    PubMed  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  CAS  PubMed  Google Scholar 

  • Pan S, Chen R (2020) Metaproteomic analysis of human gut microbiome in digestive and metabolic diseases. Adv Clin Chem 97:1–12. https://doi.org/10.1016/bs.acc.2019.12.002. Epub 2020 Feb 17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Presley LL, Ye J, Li X, LeBlanc J, Zhang Z, Ruegger PM, Allard J, McGovern D, Ippoliti A, Roth B, Cui X, Jeske DR, Elashoff D, Goodglick L, Braun J, Borneman J (2012) Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface. Inflamm Bowel Dis 18:409–417

    Article  PubMed  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn RA et al (2014) Biogeochemical forces shape the composition and physiology of polymicrobial communities in the cystic fibrosis lung. MBio 5:e00956–e00913

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajagopala SV et al (2021) Metatranscriptomics to characterize respiratory virome, microbiome, and host response directly from clinical samples. Cell Rep Methods 1:10091

    Google Scholar 

  • Ren Z, Cui G, Lu H, Chen X, Jiang J, Liu H, He Y, Ding S, Hu Z, Wang W et al (2013) Liver ischemic preconditioning (IPC) improves intestinal microbiota following liver transplantation in rats through 16s rDNA-based analysis of microbial structure shift. PLoS One 8:e75950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren L et al (2018) Transcriptionally active lung microbiome and its association with bacterial biomass and host inflammatory status. mSystems 3:e00199-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyes A, Semenkovich NP, Whiteson K et al (2012) Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol 10:607–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499(7459):431–437

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues RR, Shulzhenko N, Morgun A (2018) Transkingdom networks: a systems biology approach to identify causal members of host–microbiota interactions. Methods Mol Biol 1849:227–242. https://doi.org/10.1007/978-1-4939-8728-3_15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez JM et al (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:26050

    PubMed  Google Scholar 

  • Rondon MR, Raffel SJ, Goodman RM, Handelsman J (1999) Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. Proc Natl Acad Sci USA 96:6451–6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Routy B et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97

    Article  CAS  PubMed  Google Scholar 

  • Salazar N, Arboleya S, ValdĂ©s L et al (2014) The human intestinal microbiome at extreme ages of life. Front Genet 5:1–9

    Article  CAS  Google Scholar 

  • Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416

    Article  CAS  PubMed  Google Scholar 

  • Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I (2020) GenBank. Nucleic Acids Res 48:D84–D86. https://doi.org/10.1093/nar/gkz956

    Article  CAS  PubMed  Google Scholar 

  • Schellenberger J, Park JO, Conrad TM, Palsson BO (2010) BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Schirmer M et al (2018) Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol 3:337–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68(4):686–691

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt TSB, Raes J, Bork P (2018) The human gut microbiome: from association to modulation. Cell 172(6):1198–1215. https://doi.org/10.1016/j.cell.2018.02.044. PMID: 29522742

    Article  CAS  PubMed  Google Scholar 

  • Shakya M et al (2019) Advances and challenges in metatranscriptomic analysis. Front Genet 10:904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma CM, Hoffmann S, Darfeuille F et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464(7286):250–255

    Article  CAS  PubMed  Google Scholar 

  • Shi M et al (2022) Total infectome characterization of respiratory infections in pre-COVID-19 Wuhan, China. PLoS Pathog 18:e1010259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siezen RJ, Kleerebezem M (2011) The human gut microbiome: are we our enterotypes? Microb Biotechnol 4:55053

    Article  Google Scholar 

  • Sivan A et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith M et al (2022) Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat Med 28:713–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokol H, Seksik P (2010) The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr Opin Gastroenterol 26:327–331

    Article  PubMed  Google Scholar 

  • Sommer MO, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW (2008) The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm 363(1–2):1–25

    Article  CAS  PubMed  Google Scholar 

  • Spottiswoode N et al (2022) Pneumonia surveillance with culture-independent metatranscriptomics in HIV-positive adults in Uganda: a cross-sectional study. Lancet Microbe 3:e357–e365

    Article  PubMed  Google Scholar 

  • Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, DorĂ© J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultan M, Amstislavskiy V, Risch T et al (2014) Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genomics 15:675

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA, Kultima JR, Coelho LP, Arumugam M, Tap J, Nielsen HB et al (2013) Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods 10:1196–1199

    Article  CAS  PubMed  Google Scholar 

  • Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G et al (2015) Structure and function of the global ocean microbiome. Science 348:1261359. https://doi.org/10.1126/science.1261359

    Article  CAS  PubMed  Google Scholar 

  • Swidsinski A, Loening-Baucke V, Lochs H, Hale LP (2005a) Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol 11(8):1131–1140

    Article  PubMed  PubMed Central  Google Scholar 

  • Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H (2005b) Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 43(7):3380–3389

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamburini S et al (2016) The microbiome in early life: implications for health outcomes. Nat Med 22:713–722

    Article  CAS  PubMed  Google Scholar 

  • Tanca A, Palomba A, Pisanu S, Deligios M, Fraumene C, Manghina V, Pagnozzi D, Addis MF, Uzzau S (2014) A straightforward and efficient analytical pipeline for metaproteome characterization. Microbiome 2:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Tannock GW (2001) Molecular assessment of intestinal microflora. Am J Clin Nutr 73:410S–414S

    Article  CAS  PubMed  Google Scholar 

  • The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. https://doi.org/10.1038/nature11234

    Article  CAS  PubMed Central  Google Scholar 

  • Thomas T, Gilbert J, Meyer F (2012) Metagenomics—a guide from sampling to data analysis. Microb Inform Exp 2(1):3. https://doi.org/10.1186/2042-5783-2-3. PMID: 22587947; PMCID: PMC3351745

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomason MK, Storz G (2010) Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 44(1):167–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ et al (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463. https://doi.org/10.1038/nature24621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474:1823–1836. https://doi.org/10.1042/BCJ20160510

    Article  CAS  PubMed  Google Scholar 

  • Toledo-Arana A, Repoila F, Cossart P (2007) Small noncoding RNAs controlling pathogenesis. Curr Opin Microbiol 10(2):182–188

    Article  CAS  PubMed  Google Scholar 

  • Tremblay J, Singh K, Fern A, Kirton ES, He S, Woyke T, Lee J, Chen F, Dangl JL, Tringe SG (2015) Primer and platform effects on 16S rRNA tag sequencing. Front Microbiol 6:771

    Article  PubMed  PubMed Central  Google Scholar 

  • Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC et al (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ et al (2010a) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A 107:7503–7508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Henrissat B, Gordon JI (2010b) Viewing the human microbiome through three-dimensional glasses: integrating structural and functional studies to better define the properties of myriad carbohydrate-active enzymes. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1261–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyakht AV, Kostryukova ES, Popenko AS, Belenikin MS, Pavlenko AV, Larin AK, Karpova IY, Selezneva OV, Semashko TA, Ospanova EA et al (2013) Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun 4:2469

    Article  PubMed  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwenhoek A (1684) An abstract of a Letter from Antonie van Leeuwenhoek, Sep. 12, 1683. About animals in the scrurf of the teeth. Philos Trans R Soc Lond 14:568–574

    Google Scholar 

  • Vangay P et al (2018) US immigration westernizes the human gut microbiome. Cell 175:962–972.e910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vatanen T et al (2022) Transcription shifts in gut bacteria shared between mothers and their infants. Sci Rep 12:1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vemuri GN, Aristidou AA (2005) Metabolic engineering in the -omics era: elucidating and modulating regulatory networks. Microbiol Mol Biol Rev 69(2):197–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  • Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud MG, Apajalahti J, Tysk C, Hettich RL, Jansson JK (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189

    Article  CAS  PubMed  Google Scholar 

  • Viaud S et al (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijay-Kumar M, Aitken JD, Carvalho FA et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328(5975):228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villarreal L (2012) Viruses and host evolution: virus-mediated self identity. In: Lopez-Larrea C (ed) Self and nonself. Springer, New York, pp 185–217

    Chapter  Google Scholar 

  • Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24(5):613–646

    Article  CAS  PubMed  Google Scholar 

  • Virgin HW (2014) The virome in mammalian physiology and disease. Cell 157:142–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyas U, Ranganathan N (2012) Probiotics, prebiotics, and synbiotics: gut and beyond. Gastroenterol Res Pract 2012:872716

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh AM, Crispie F, O’Sullivan O, Finnegan L, Claesson MJ, Cotter PD (2018) Species classifier choice is a key consideration when analysing low-complexity food microbiome data. Microbiome 6(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS (2015) Application of metagenomics in the human gut microbiome. World J Gastroenterol 21(3):803–814. https://doi.org/10.3748/wjg.v21.i3.803. PMID: 25624713; PMCID: PMC4299332

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Wang K, Wu W, Giannoulatou E, Ho JWK, Li L (2019) Host and microbiome multi-omics integration: applications and methodologies. Biophys Rev 11:55–65. https://doi.org/10.1007/s12551-018-0491-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang DD et al (2021) The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat Med 27:333–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, Kustu S (2001) Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays. Anal Biochem 290(2):205–213

    Article  CAS  PubMed  Google Scholar 

  • Wilmes P, Bond PL (2006) Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14(2):92–97. https://doi.org/10.1016/j.tim.2005.12.006

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6:e1000667

    Article  PubMed  PubMed Central  Google Scholar 

  • **a LC, Cram JA, Chen T, Fuhrman JA, Sun F (2011) Accurate genome relative abundance estimation based on shotgun metagenomic reads. PLoS One 6:e27992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ao M, Yang J, Feng Y, Zhu Y, Chai X, Wang Y (2017) Metaproteomic strategies and applications for gut microbial research. Appl Microbiol Biotechnol 101(8):3077–3088. https://doi.org/10.1007/s00253-017-8215-7

    Article  CAS  PubMed  Google Scholar 

  • **ong W, Giannone RJ, Morowitz MJ, Banfield JF, Hettich RL (2015) Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut. J Proteome Res 14:133–141

    Article  CAS  PubMed  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen S, Johnson JS (2021) Metagenomics: a path to understanding the gut microbiome. Mamm Genome 32(4):282–296. https://doi.org/10.1007/s00335-021-09889-x. Epub 2021 Jul 14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Sun H, Wang X (2012) Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl Biochem Biotechnol 168:1718–1727

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Sun J, Cao H, Tian R, Cai L, Ding W, Qian PY (2016) Post-translational modifications are enriched within protein functional groups important to bacterial adaptation within a deep-sea hydrothermal vent environment. Microbiome 4:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Li L, Mayne J, Ning Z, Stintzi A, Figeys D (2018a) Assessing the impact of protein extraction methods for human gut metaproteomics. J Proteome 180:120–127

    Article  CAS  Google Scholar 

  • Zhang X, Deeke SA, Ning Z, Starr AE, Butcher J, Li J, Mayne J, Cheng K, Liao B, Li L, Singleton R, Mack D, Stintzi A, Figeys D (2018b) Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease. Nat Commun 9:2873

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L et al (2020) Characterization of antibiotic resistance and host-microbiome interactions in the human upper respiratory tract during influenza infection. Microbiome 8:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2021) Metatranscriptomics for the human microbiome and microbial community functional profiling. Annu Rev Biomed Data Sci 4:279–311

    Article  PubMed  Google Scholar 

  • Zhao L, Hartung T (2015) Metabonomics and toxicology. Methods Mol Biol 1277:209–231. https://doi.org/10.1007/978-1-4939-2377-9_15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the principal, of Gargi College for providing the infrastructural support.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indra Mani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mathuria, A., Chaudhary, A., Sharma, H., Mani, I. (2024). Multi-omics in Gut Microbiome. In: Mani, I., Singh, V. (eds) Multi-Omics Analysis of the Human Microbiome. Springer, Singapore. https://doi.org/10.1007/978-981-97-1844-3_9

Download citation

Publish with us

Policies and ethics

Navigation